1
完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
摘要: 本文将深入和大家探讨微服务架构下,分布式事务的各种解决方案,并重点为大家解读阿里巴巴提出的分布式事务解决方案----GTS。该方案中提到的GTS是全新一代解决微服务问题的分布式事务互联网中间件。
原文地址:https://yq.aliyun.com/articles/542020 1 微服务的发展 微服务倡导将复杂的单体应用拆分为若干个功能简单、松耦合的服务,这样可以降低开发难度、增强扩展性、便于敏捷开发。当前被越来越多的开发者推崇,很多互联网行业巨头、开源社区等都开始了微服务的讨论和实践。Hailo有160个不同服务构成,NetFlix有大约600个服务。国内方面,阿里巴巴、腾讯、360、京东、58同城等很多互联网公司都进行了微服务化实践。当前微服务的开发框架也非常多,比较著名的有Dubbo、SpringCloud、thrift 、grpc等。 2 微服务落地存在的问题 虽然微服务现在如火如荼,但对其实践其实仍处于探索阶段。很多中小型互联网公司,鉴于经验、技术实力等问题,微服务落地比较困难。如著名架构师Chris Richardson所言,目前存在的主要困难有如下几方面: 1)单体应用拆分为分布式系统后,进程间的通讯机制和故障处理措施变的更加复杂。 2)系统微服务化后,一个看似简单的功能,内部可能需要调用多个服务并操作多个数据库实现,服务调用的分布式事务问题变的非常突出。 3)微服务数量众多,其测试、部署、监控等都变的更加困难。 随着RPC框架的成熟,第一个问题已经逐渐得到解决。例如dubbo可以支持多种通讯协议,springcloud可以非常好的支持restful调用。对于第三个问题,随着docker、devops技术的发展以及各公有云paas平台自动化运维工具的推出,微服务的测试、部署与运维会变得越来越容易。 而对于第二个问题,现在还没有通用方案很好的解决微服务产生的事务问题。分布式事务已经成为微服务落地最大的阻碍,也是最具挑战性的一个技术难题。 为此,本文将深入和大家探讨微服务架构下,分布式事务的各种解决方案,并重点为大家解读阿里巴巴提出的分布式事务解决方案----GTS。该方案中提到的GTS是全新一代解决微服务问题的分布式事务互联网中间件。 3 传统分布式事务解决方案 3.1 基于XA协议的两阶段提交方案 交易中间件与数据库通过 XA 接口规范,使用两阶段提交来完成一个全局事务, XA 规范的基础是两阶段提交协议。 第一阶段是表决阶段,所有参与者都将本事务能否成功的信息反馈发给协调者;第二阶段是执行阶段,协调者根据所有参与者的反馈,通知所有参与者,步调一致地在所有分支上提交或者回滚。 两阶段提交方案应用非常广泛,几乎所有商业OLTP数据库都支持XA协议。但是两阶段提交方案锁定资源时间长,对性能影响很大,基本不适合解决微服务事务问题。 3.2 TCC方案 TCC方案在电商、金融领域落地较多。TCC方案其实是两阶段提交的一种改进。其将整个业务逻辑的每个分支显式的分成了Try、Confirm、Cancel三个操作。Try部分完成业务的准备工作,confirm部分完成业务的提交,cancel部分完成事务的回滚。基本原理如下图所示。 事务开始时,业务应用会向事务协调器注册启动事务。之后业务应用会调用所有服务的try接口,完成一阶段准备。之后事务协调器会根据try接口返回情况,决定调用confirm接口或者cancel接口。如果接口调用失败,会进行重试。 TCC方案让应用自己定义数据库操作的粒度,使得降低锁冲突、提高吞吐量成为可能。 当然TCC方案也有不足之处,集中表现在以下两个方面:
上述原因导致TCC方案大多被研发实力较强、有迫切需求的大公司所采用。微服务倡导服务的轻量化、易部署,而TCC方案中很多事务的处理逻辑需要应用自己编码实现,复杂且开发量大。 3.3 基于消息的最终一致性方案 消息一致性方案是通过消息中间件保证上、下游应用数据操作的一致性。基本思路是将本地操作和发送消息放在一个事务中,保证本地操作和消息发送要么两者都成功或者都失败。下游应用向消息系统订阅该消息,收到消息后执行相应操作。 消息方案从本质上讲是将分布式事务转换为两个本地事务,然后依靠下游业务的重试机制达到最终一致性。基于消息的最终一致性方案对应用侵入性也很高,应用需要进行大量业务改造,成本较高。 4 GTS--分布式事务解决方案 GTS是一款分布式事务中间件,由阿里巴巴中间件部门研发,可以为微服务架构中的分布式事务提供一站式解决方案。 更多GTS资料请访问研发团队微博。 4.1 GTS的核心优势
有些情况下,应用需要调用第三方系统的接口,而第三方系统没有接入GTS。此时需要用到GTS的MT模式。GTS的MT模式可以等价于TCC模式,用户可以根据自身业务需求自定义每个事务阶段的具体行为。MT模式提供了更多的灵活性,可能性,以达到特殊场景下的自定义优化及特殊功能的实现。
4.2 GTS的应用场景 GTS可应用在涉及服务调用的多个领域,包括但不限于金融支付、电信、电子商务、快递物流、广告营销、社交、即时通信、手游、视频、物联网、车联网等,详细介绍可以阅读 《GTS--阿里巴巴分布式事务全新解决方案》一文。 4.3 GTS与微服务的集成 GTS包括客户端(GTS Client)、资源管理器(GTS RM)和事务协调器(GTS Server)三个部分。GTS Client主要用来界定事务边界,完成事务的发起与结束。GTS RM完成事务分支的创建、提交、回滚等操作。GTS Server主要负责分布式事务的整体推进,事务生命周期的管理。GTS和微服务集成的结构图如下所示,GTS Client需要和业务应用集成部署,RM与微服务集成部署。 4.4 GTS的输出形式 GTS目前有三种输出形式:公有云输出、公网输出、专有云输出。 4.4.1 公有云输出 这种输出形式面向阿里云用户。如果用户的业务系统已经部署到阿里云上,可以申请开通公有云GTS。开通后业务应用即可通过GTS保证服务调用的一致性。这种使用场景下,业务系统和GTS间的网络环境比较理想,达到很好性能。 4.4.2 公网输出 这种输出形式面向于非阿里云的用户,使用更加方便、灵活,业务系统只要能连接互联网即可享受GTS提供的云服务(与公有云输出的差别在于客户端部署于用户本地,而不在云上)。 在正常网络环境下,以包含两个本地事务的全局事务为例,事务完成时间在20ms左右,50个并发就可以轻松实现1000TPS以上分布式事务,对绝大多数业务来说性能是足够的。在公网环境,网络闪断很难完全避免,这种情况下GTS仍能保证服务调用的数据一致性。 具体使用样例使用参见4.7节GTS的工程样例。 4.4.3 专有云输出 这种形式主要面向于已建设了自己专有云平台的大用户,GTS可以直接部署到用户的专有云上,为专有云提供分布式事务服务。目前已经有10多个特大型企业的专有云使用GTS解决分布式事务难题,性能与稳定性经过了用户的严格检测。 4.5 GTS的使用方式 GTS对应用的侵入性非常低,使用也很简单。下面以订单存储应用为例说明。订单业务应用通过调用订单服务和库存服务完成订单业务,服务开发框架为Dubbo。 4.5.1 订单业务应用 在业务函数外围使用@TxcTransaction注解即可开启分布式事务。Dubbo应用通过隐藏参数将GTS的事务xid传播到服务端。 @TxcTransaction(timeout = 1000 * 10) public void Bussiness(OrderService orderService, StockService stockService, String userId) { //获取事务上下文String xid = TxcContext.getCurrentXid();//通过RpcContext将xid传到一个服务端RpcContext.getContext().setAttachment("xid", xid);//执行自己的业务逻辑int productId = new Random().nextInt(100);int productNum = new Random().nextInt(100);OrderDO orderDO = new OrderDO(userId, productId, productNum, new Timestamp(new Date().getTime()));orderService.createOrder(orderDO);//通过RpcContext将xid传到另一个服务端RpcContext.getContext().setAttachment("xid",xid);stockService.updateStock(orderDO); } 4.5.2 服务提供者 更新库存方法 public int updateStock(OrderDO orderDO) { //获取全局事务ID,并绑定到上下文String xid = RpcContext.getContext().getAttachment("xid");TxcContext.bind(xid,null);//执行自己的业务逻辑int ret = jdbcTemplate.update("update stock set amount = amount - ? where product_id = ?",new Object[]{orderDO.getNumber(), orderDO.getProductId()});TxcContext.unbind();return ret; } 4.6 GTS的应用情况 GTS目前已经在淘宝、天猫、阿里影业、淘票票、阿里妈妈、1688等阿里各业务系统广泛使用,经受了16年和17年两年双十一海量请求的考验。某线上业务系统最高流量已达十万TPS(每秒钟10万笔事务)。 GTS在公有云和专有云输出后,已经有了100多个线上用户,很多用户通过GTS解决SpringCloud、Dubbo、Edas等服务框架的分布式事务问题。业务领域涉及电力、物流、ETC、烟草、金融、零售、电商、共享出行等十几个行业,得到用户的一致认可。 ![](https://img.alicdn.com/tfs/TB1QpqNdFGWBuNjy0FbXXb4sXXa-1530-1140.png) 上图是GTS与SpringCloud集成,应用于某共享出行系统。业务共享出行场景下,通过GTS支撑物联网系统、订单系统、支付系统、运维系统、分析系统等系各统应用的数据一致性,保证海量订单和数千万流水的交易。 识别以下二维码,阅读更多干货 |
|
相关推荐
|
|
基于 DSP5509 进行数字图像处理中 Sobel 算子边缘检测的硬件连接电路图
3184 浏览 0 评论
786 浏览 0 评论
普中科技F28335开发板中,如何使用aic23播放由代码生成的正弦波
3617 浏览 0 评论
4381 浏览 1 评论
1363 浏览 1 评论
小黑屋| 手机版| Archiver| 德赢Vwin官网 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-21 12:21 , Processed in 0.640455 second(s), Total 67, Slave 50 queries .
Powered by 德赢Vwin官网 网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
德赢Vwin官网 观察
版权所有 © 湖南华秋数字科技有限公司
德赢Vwin官网 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号