Tensorflow实现MNIST的手写数字识别
CNN.py
importtensorflowastf
#定义CNN网络结构
defCNN(input_tensor,keep_prob):
#C1是卷积层,Input=[batch,28,28,1],output=[batch,28,28,32],W=[3,3,1,32],S=[1,1,1,1]
conv1_w=tf.Variable(tf.truncated_normal([3,3,1,32],stddev=0.1))#1
conv1_b=tf.Variable(tf.constant(0,1,shape=[32]))#1
conv1=tf.nn.conv2d(input_tensor,conv1_w,strides=[1,1,1,1],padding=‘SAME’)+conv1_b#2
conv1=tf.nn.relu(conv1)
#S2是池化层,Input=[batch,28,28,32],output=[batch,14,14,32],Ksize=[1,2,2,1],S=[1,2,2,1]
pool_1=tf.nn.max_pool(conv1,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME’)#2
#C3是卷积层,Input=[batch,14,14,32],output=[batch,14,14,50],W=[3,3,32,50],S=[1,1,1,1]
conv2_w=tf.Variable(tf.truncated_normal([3,3,32,50],stddev=0.1))
conv2_b=tf.Variable(tf.constant(0.1,shape=[50]))
conv2=tf.nn.conv2d(pool_1,conv2_w,strides=[1,1,1,1],padding=‘SAME’)+conv2_b
conv2=tf.nn.relu(conv2)
#S4是池化层,Input=[batch,14,14,32],output=[batch,7,7,50],Ksize=[1,2,2,1],S=[1,2,2,1]
pool_2=tf.nn.max_pool(conv2,ksize=[1,2,2,1],strides=[1,2,2,1],padding=‘SAME’)
#F5是全连接层,Input=[batch,7,7,50],output=[batch,1024]
fc1_w=tf.Variable(tf.truncated_normal([7*7*50,1024],stddev=0.1))
fc1_b=tf.Variable(tf.constant(0.1,shape=[1024]))
pool_2_flat=tf.reshape(pool_2,[-1,7*7*50])
fc1=tf.nn.relu(tf.matmul(pool_2_flat,fc1_w)+fc1_b)
#dropout(随机权重失活)
fc1_drop=tf.nn.dropout(fc1,keep_prob=keep_prob)#3
#F6是全连接层,Input=[batch,1024],output=[batch,10]
fc2_w=tf.Variable(tf.truncated_normal([1024,10],stddev=0.1))
fc2_b=tf.Variable(tf.constant(0.1,shape=[10]))
y_out=tf.nn.softmax(tf.matmul(fc1_drop,fc2_w)+fc2_b)#4
returny_out
CNN_main.py
importtensorflowastf
importnumpyasnp
fromtensorflow.examples.tutorials.mnistimportinput_data
importCNN
#读取数据
mnist=input_data.read_data_sets(‘MNIST_data’,one_hot=True)
sess=tf.InteractiveSession()#5
#设置占位符,尺寸为样本输入和输出的尺寸
x=tf.placeholder(tf.float32,[None,784])#6
y_=tf.placeholder(tf.float32,[None,10])
x_img=tf.reshape(x,[-1,28,28,1])
keep_prob=tf.placeholder(tf.float32)
#用自己构建的神经网络得到预测结果
y_out=CNN.CNN(x_img,keep_prob)
#建立lossfunction,为交叉熵
cross_entropy=-tf.reduce_sum(y_*tf.log(y_out))#损失函数#7
loss=tf.reduce_mean(cross_entropy,reduction_indices=[1]))
#配置Adam优化器,学习速率为0.0001
train_step=tf.train.AdamOptimizer(1e-4).minimize(loss)#8
#建立正确率计算表达式
correct_prediction=tf.equal(tf.argmax(y_out,1),tf.argmax(y_,1))#9
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#开始喂数据,训练
tf.global_variables_initializer().run()
foriinrange(2000):
batch=mnist.train.next_batch(50)
ifi%100==0:
train_accurcy=accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1})
print(“step%d,train_accurcy=%g”%(i,train_accurcy))
train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})
#训练结束后,使用测试集进行测试,输出最终结果
print(“test_accuracy=%g”%accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1}))#0.9707#10