线上服务内存溢出 这周刚上班突然有一个项目内存溢出了,排查了半天终于找到问题所在,在此记录下,防止后面再次出现类似的情况。 先简单说下当出现内存溢出之后,我是如何排查的,首先通过jstack打印出堆栈信息,然后通过分析工具对这些文件进行分析,根据分析结果我们就可以知道大概是由于什么问题引起的。 关于jstack如何使用,大家可以先看看这篇文章 jstack的使用 问题排查 下面是我打印出来的信息,大部分都是这个 “http-nio-8761-exec-124” #580 daemon prio=5 os_prio=0tid=0x00007fbd980c0800 nid=0x249 waiting on condition [0x00007fbcf09c8000] java.lang.Thread.State: TIMED_WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for 《0x00000000f73a4508》 (a java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject) at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:215) at java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos(AbstractQueuedSynchronizer.java:2078) at java.util.concurrent.LinkedBlockingQueue.poll(LinkedBlockingQueue.java:467) at org.apache.tomcat.util.threads.TaskQueue.poll(TaskQueue.java:85) at org.apache.tomcat.util.threads.TaskQueue.poll(TaskQueue.java:31) at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1073) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1134) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable.run(TaskThread.java:61) at java.lang.Thread.run(Thread.java:748) 看到了如上信息之后,大概可以看出是由于线程池的使用不当导致的,那么根据信息继续往下看,看到ThreadPoolExecutor那么就可以知道这肯定是创建了线程池,那么我们就在代码里找,哪里创建使用了线程池,我就找到这么一段代码。 public class ThreadPool { private static ExecutorService pool; private static long logTime = 0; public static ExecutorService getPool() { if (pool == null) { pool = Executors.newFixedThreadPool(20); } return pool; } } 乍一看,可能写的同学是想把这当一个全局的线程池用,所有的业务凡是用到线程的都会使用这个类,为了统一管理线程,想法没什么毛病,但是这样写确实有点子毛病。 newFixedThreadPool分析 上面使用了Executors.newFixedThreadPool(20)创建了一个固定的线程池,我们先分析下newFixedThreadPool是怎么样的一个流程。
一个请求进来之后,如果核心线程有空闲线程直接使用核心线程中的线程执行任务,不会添加到阻塞队列中,如果核心线程满了,判断是否达到允许的最大线程数,如果没有继续则创建线程执行,直至达到允许的最大线程数,之后进入的请求如果没有空闲的线程,则进入阻塞队列,等待其他线程执行结束。 了解了流程之后我们再来看newFixedThreadPool的代码实现。 public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue《Runnable》()); } public LinkedBlockingQueue() { this(Integer.MAX_VALUE); } public LinkedBlockingQueue(int capacity) { if (capacity 《= 0) throw new IllegalArgumentException(); // 任务阻塞队列的初始容量 this.capacity = capacity; last = head = new Node《E》(null); } 定位问题 看到了这里不知道你是否知道了此次引起内存泄漏的原因,其实就是因为阻塞队列的容量过大。 如果不手动的指定阻塞队列的大小,那么它默认是Integer.MAX_VALUE,我们的线程池只有20个线程可以处理任务,其他的请求全部放到阻塞队列中,那么当涌入大量的请求之后,阻塞队列一直增加,你的内存配置又非常紧凑的话,那么是很容易出现内存溢出的。 我们的业务是在APP启动的时候,会使用线程池去检查用户的一些配置,应用的启动量还是非常大的而且给的内存配置也不是很足,所以运行一段时间后,部分容器就出现了内存溢出的情况。 如何正确的创建线程池 以前其实没太在意这种问题,都是使用Executors去创建线程,但是这样确实会存在一些问题,就像这些的内存泄漏,所以一般不要使用Executors去创建线程,使用ThreadPoolExecutor进行创建,其实Executors底层也是使用ThreadPoolExecutor进行创建的。 使用ThreadPoolExecutor创建需要自己指定核心线程数、最大线程数、线程的空闲时长以及阻塞队列。 3种阻塞队列 ArrayBlockingQueue:基于数组的先进先出队列,有界 LinkedBlockingQueue:基于链表的先进先出队列,有界 SynchronousQueue:无缓冲的等待队列,无界 我们使用了有界的队列,那么当队列满了之后如何处理后面进入的请求,我们可以通过不同的策略进行设置。 4种拒绝策略 AbortPolicy:默认,队列满了丢任务抛出异常 DiscardPolicy:队列满了丢任务不异常 DiscardOldestPolicy:将最早进入队列的任务删,之后再尝试加入队列 CallerRunsPolicy:如果添加到线程池失败,那么主线程会自己去执行该任务 在创建之前,先说下我最开始的版本,因为队列是固定的,最开始我们不知道有拒绝策略,所以在队列满了之后再添加的话会出现异常,我就在异常里面睡眠了1秒,等待其他的线程执行完毕获取空闲连接,但是还是会有部分不能得到执行。 接下来我们来创建一个容错率比较高的线程池。 public class WordTest { public static void main(String[] args) throws InterruptedException { System.out.println(“开始执行”); // 阻塞队列容量声明为100个 ThreadPoolExecutor executorService = new ThreadPoolExecutor(10, 10, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue《》(100)); // 设置拒绝策略 executorService.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy()); // 空闲队列存活时间 executorService.setKeepAliveTime(20, TimeUnit.SECONDS); List《Integer》 list = new ArrayList《》(2000); try { // 模拟200个请求 for (int i = 0; i 《 200; i++) { final int num = i; executorService.execute(() -》 { System.out.println(Thread.currentThread().getName() + “-结果:” + num); list.add(num); }); } } finally { executorService.shutdown(); executorService.awaitTermination(10, TimeUnit.SECONDS); } System.out.println(“线程执行结束”); } } 思路:我声明了100容量的阻塞队列,模拟了一个200的请求,很显然肯定有部分请求进入不了队列,但是我使用了CallerRunsPolicy策略,当队列满了之后,使用主线程去进行处理,这样就不会出现有部分请求得不到执行的情况,也不会因为因为阻塞队列过大导致内存溢出的情况。 如果还有什么更好地写法欢迎各位指教! 通过测试200个请求全部得到执行,有3个请求由主线程进行了处理。 总结 如何更好的创建线程池上面已经说过了,关于线程池在业务中的使用,其实我们这种全局的思路是不太好的,因为如果从全局考虑去创建线程池,是很难把控的,因为你无法准确地评估所有的请求加起来会有多大的量,所以最好是每个业务创建独立的线程池进行处理,这样是很容易评估量化的。 另外创建的时候,最好评估下大概每秒的请求量有多少,然后来合理的初始化线程数和队列大小。