1
完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
打开arduino IDE 软件,菜单栏文件--》示例--》ArduinoISP,这就是官方的isp下载器代码。直接打开
这里介绍下icsp口的定义 味噌(50个)5V SCK(52名)MOSI(51个) RST地线 洋洋装着这个电容是10uf的,接地 当然也能这样接,这样要下载的板子就不用再接电源了 这里下,Arduino UNO和Mega2560的口定义是不一样的,需要按修改。程直接操作是不能 改变的地方是这样的代码 #define USE_OLD_STYLE_WIRING #ifdef USE_OLD_STYLE_WIRING #define PIN_MOSI 11 #define PIN_MISO 12 #define PIN_SCK 13 #endif 改成这个改成这个因为mega2560的原因就是这样定义,具体可查看手册 #define USE_OLD_STYLE_WIRING //此处别忘记取消注释 #ifdef USE_OLD_STYLE_WIRING #define PIN_MOSI 51 //mega2560的MOSI 11 #define PIN_MISO 50 //mega2560的MISO 12 #define PIN_SCK 52 //mega2560的SCK 13 #endif 下面附上修改的代码 // ArduinoISP //reset引脚接10uf电容 到 gnd ,就是10号引脚 // Copyright (c) 2008-2011 Randall Bohn // If you require a license, see // [url=http://www.opensource.org/licenses/bsd-license.php]http://www.opensource.org/licenses/bsd-license.php[/url] // // This sketch turns the Arduino into a AVRISP // using the following arduino pins: // // Pin 10 is used to reset the target microcontroller. // // By default, the hardware SPI pins MISO, MOSI and SCK pins are used // to communicate with the target. On all Arduinos, these pins can be found // on the ICSP/SPI header: // // MISO °。 。 5V (!) Avoid this pin on Due, Zero.。。 // SCK 。 。 MOSI // 。 。 GND // // On some Arduinos (Uno,。。.), pins MOSI, MISO and SCK are the same pins // as digital pin 11, 12 and 13, respectively. That is why many tutorials // instruct you to hook up the target to these pins. If you find this wiring // more practical, have a define USE_OLD_STYLE_WIRING. This will work even // even when not using an Uno. (On an Uno this is not needed)。 // // Alternatively you can use any other digital pin by configuring software (‘BitBanged’) // SPI and having appropriate defines for PIN_MOSI, PIN_MISO and PIN_SCK. // // IMPORTANT: When using an Arduino that is not 5V tolerant (Due, Zero, 。。.) // as the programmer, make sure to not expose any of the programmer‘s pins to 5V. // A simple way to accomplish this is to power the complete system (programmer // and target) at 3V3. // // Put an LED (with resistor) on the following pins: // 9: Heartbeat - shows the programmer is running // 8: Error - Lights up if something goes wrong (use red if that makes sense) // 7: Programming - In communication with the slave // #include “Arduino.h” #undef SERIAL #define PROG_FLICKER true // Configure SPI clock (in Hz)。 // E.g. for an attiny @128 kHz: the datasheet states that both the high // and low spi clock pulse must be 》 2 cpu cycles, so take 3 cycles i.e. // divide target f_cpu by 6: // #define SPI_CLOCK (128000/6) // // A clock slow enough for an attiny85 @ 1MHz, is a reasonable default: #define SPI_CLOCK (1000000/6) // Select hardware or software SPI, depending on SPI clock. // Currently only for AVR, for other archs (Due, Zero,。。.), // hardware SPI is probably too fast anyway. #if defined(ARDUINO_ARCH_AVR) #if SPI_CLOCK 》 (F_CPU / 128) #define USE_HARDWARE_SPI #endif #endif // Configure which pins to use: // The standard pin configuration. #ifndef ARDUINO_HOODLOADER2 #define RESET 10 // Use pin 10 to reset the target rather than SS #define LED_HB 9 #define LED_ERR 8 #define LED_PMODE 7 // Uncomment following line to use the old Uno style wiring // (using pin 11, 12 and 13 instead of the SPI header) on Leonardo, Due.。。 #define USE_OLD_STYLE_WIRING //此处别忘记取消注释 #ifdef USE_OLD_STYLE_WIRING #define PIN_MOSI 51 //mega2560的MOSI 11 #define PIN_MISO 50 //mega2560的MISO 12 #define PIN_SCK 52 //mega2560的SCK 13 #endif // HOODLOADER2 means running sketches on the atmega16u2 // serial converter chips on Uno or Mega boards. // We must use pins that are broken out: #else #define RESET 10 #define LED_HB 7 #define LED_ERR 6 #define LED_PMODE 5 #endif By default, use hardware SPI pins: //#ifndef PIN_MOSI //#define PIN_MOSI MOSI //#endif // //#ifndef PIN_MISO //#define PIN_MISO MISO //#endif // //#ifndef PIN_SCK //#define PIN_SCK SCK //#endif // Force bitbanged SPI if not using the hardware SPI pins: //#if (PIN_MISO != MISO) || (PIN_MOSI != MOSI) || (PIN_SCK != SCK) //#undef USE_HARDWARE_SPI //#endif // Configure the serial port to use. // // Prefer the USB virtual serial port (aka. native USB port), if the Arduino has one: // - it does not autoreset (except for the magic baud rate of 1200)。 // - it is more reliable because of USB handshaking. // // Leonardo and similar have an USB virtual serial port: ’Serial‘。 // Due and Zero have an USB virtual serial port: ’SerialUSB‘。 // // On the Due and Zero, ’Serial‘ can be used too, provided you disable autoreset. // To use ’Serial‘: #define SERIAL Serial #ifdef SERIAL_PORT_USBVIRTUAL #define SERIAL SERIAL_PORT_USBVIRTUAL #else #define SERIAL Serial #endif // Configure the baud rate: #define BAUDRATE 19200 // #define BAUDRATE 115200 // #define BAUDRATE 1000000 #define HWVER 2 #define SWMAJ 1 #define SWMIN 18 // STK Definitions #define STK_OK 0x10 #define STK_FAILED 0x11 #define STK_UNKNOWN 0x12 #define STK_INSYNC 0x14 #define STK_NOSYNC 0x15 #define CRC_EOP 0x20 //ok it is a space.。。 void pulse(int pin, int times); #ifdef USE_HARDWARE_SPI #include “SPI.h” #else #define SPI_MODE0 0x00 class SPISettings { public: // clock is in Hz SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) : clock(clock){ (void) bitOrder; (void) dataMode; }; private: uint32_t clock; friend class BitBangedSPI; }; class BitBangedSPI { public: void begin() { digitalWrite(PIN_SCK, LOW); digitalWrite(PIN_MOSI, LOW); pinMode(PIN_SCK, OUTPUT); pinMode(PIN_MOSI, OUTPUT); pinMode(PIN_MISO, INPUT); } void beginTransaction(SPISettings settings) { pulseWidth = (500000 + settings.clock - 1) / settings.clock; if (pulseWidth == 0) pulseWidth = 1; } void end() {} uint8_t transfer (uint8_t b) { for (unsigned int i = 0; i 《 8; ++i) { digitalWrite(PIN_MOSI, (b & 0x80) ? HIGH : LOW); digitalWrite(PIN_SCK, HIGH); delayMicroseconds(pulseWidth); b = (b 《《 1) | digitalRead(PIN_MISO); digitalWrite(PIN_SCK, LOW); // slow pulse delayMicroseconds(pulseWidth); } return b; } private: unsigned long pulseWidth; // in microseconds }; static BitBangedSPI SPI; #endif void setup() { SERIAL.begin(BAUDRATE); pinMode(LED_PMODE, OUTPUT); pulse(LED_PMODE, 2); pinMode(LED_ERR, OUTPUT); pulse(LED_ERR, 2); pinMode(LED_HB, OUTPUT); pulse(LED_HB, 2); } int error = 0; int pmode = 0; // address for reading and writing, set by ’U‘ command unsigned int here; uint8_t buff[256]; // global block storage #define beget16(addr) (*addr * 256 + *(addr+1) ) typedef struct param { uint8_t devicecode; uint8_t revision; uint8_t progtype; uint8_t parmode; uint8_t polling; uint8_t selftimed; uint8_t lockbytes; uint8_t fusebytes; uint8_t flashpoll; uint16_t eeprompoll; uint16_t pagesize; uint16_t eepromsize; uint32_t flashsize; } parameter; parameter param; // this provides a heartbeat on pin 9, so you can tell the software is running. uint8_t hbval = 128; int8_t hbdelta = 8; void heartbeat() { static unsigned long last_time = 0; unsigned long now = millis(); if ((now - last_time) 《 40) return; last_time = now; if (hbval 》 192) hbdelta = -hbdelta; if (hbval 《 32) hbdelta = -hbdelta; hbval += hbdelta; analogWrite(LED_HB, hbval); } static bool rst_active_high; void reset_target(bool reset) { digitalWrite(RESET, ((reset && rst_active_high) || (!reset && !rst_active_high)) ? HIGH : LOW); } void loop(void) { // is pmode active? if (pmode) { digitalWrite(LED_PMODE, HIGH); } else { digitalWrite(LED_PMODE, LOW); } // is there an error? if (error) { digitalWrite(LED_ERR, HIGH); } else { digitalWrite(LED_ERR, LOW); } // light the heartbeat LED heartbeat(); if (SERIAL.available()) { avrisp(); } } uint8_t getch() { while (!SERIAL.available()); return SERIAL.read(); } void fill(int n) { for (int x = 0; x 《 n; x++) { buff[x] = getch(); } } #define PTIME 30 void pulse(int pin, int times) { do { digitalWrite(pin, HIGH); delay(PTIME); digitalWrite(pin, LOW); delay(PTIME); } while (times--); } void prog_lamp(int state) { if (PROG_FLICKER) { digitalWrite(LED_PMODE, state); } } uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { SPI.transfer(a); SPI.transfer(b); SPI.transfer(c); return SPI.transfer(d); } void empty_reply() { if (CRC_EOP == getch()) { SERIAL.print((char)STK_INSYNC); SERIAL.print((char)STK_OK); } else { error++; SERIAL.print((char)STK_NOSYNC); } } void breply(uint8_t b) { if (CRC_EOP == getch()) { SERIAL.print((char)STK_INSYNC); SERIAL.print((char)b); SERIAL.print((char)STK_OK); } else { error++; SERIAL.print((char)STK_NOSYNC); } } void get_version(uint8_t c) { switch (c) { case 0x80: breply(HWVER); break; case 0x81: breply(SWMAJ); break; case 0x82: breply(SWMIN); break; case 0x93: breply(’S‘); // serial programmer break; default: breply(0); } } void set_parameters() { // call this after reading paramter packet into buff[] param.devicecode = buff[0]; param.revision = buff[1]; param.progtype = buff[2]; param.parmode = buff[3]; param.polling = buff[4]; param.selftimed = buff[5]; param.lockbytes = buff[6]; param.fusebytes = buff[7]; param.flashpoll = buff[8]; // ignore buff[9] (= buff[8]) // following are 16 bits (big endian) param.eeprompoll = beget16(&buff[10]); param.pagesize = beget16(&buff[12]); param.eepromsize = beget16(&buff[14]); // 32 bits flashsize (big endian) param.flashsize = buff[16] * 0x01000000 + buff[17] * 0x00010000 + buff[18] * 0x00000100 + buff[19]; // avr devices have active low reset, at89sx are active high rst_active_high = (param.devicecode 》= 0xe0); } void start_pmode() { // Reset target before driving PIN_SCK or PIN_MOSI // SPI.begin() will configure SS as output, // so SPI master mode is selected. // We have defined RESET as pin 10, // which for many arduino’s is not the SS pin. // So we have to configure RESET as output here, // (reset_target() first sets the correct level) reset_target(true); pinMode(RESET, OUTPUT); SPI.begin(); SPI.beginTransaction(SPISettings(SPI_CLOCK, MSBFIRST, SPI_MODE0)); // See avr datasheets, chapter “SERIAL_PRG Programming Algorithm”: // Pulse RESET after PIN_SCK is low: digitalWrite(PIN_SCK, LOW); delay(20); // discharge PIN_SCK, value arbitrally chosen reset_target(false); // Pulse must be minimum 2 target CPU clock cycles // so 100 usec is ok for CPU speeds above 20KHz delayMicroseconds(100); reset_target(true); // Send the enable programming command: delay(50); // datasheet: must be 》 20 msec spi_transaction(0xAC, 0x53, 0x00, 0x00); pmode = 1; } void end_pmode() { SPI.end(); // We‘re about to take the target out of reset // so configure SPI pins as input pinMode(PIN_MOSI, INPUT); pinMode(PIN_SCK, INPUT); reset_target(false); pinMode(RESET, INPUT); pmode = 0; } void universal() { uint8_t ch; fill(4); ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]); breply(ch); } void flash(uint8_t hilo, unsigned int addr, uint8_t data) { spi_transaction(0x40 + 8 * hilo, addr 》》 8 & 0xFF, addr & 0xFF, data); } void commit(unsigned int addr) { if (PROG_FLICKER) { prog_lamp(LOW); } spi_transaction(0x4C, (addr 》》 8) & 0xFF, addr & 0xFF, 0); if (PROG_FLICKER) { delay(PTIME); prog_lamp(HIGH); } } unsigned int current_page() { if (param.pagesize == 32) { return here & 0xFFFFFFF0; } if (param.pagesize == 64) { return here & 0xFFFFFFE0; } if (param.pagesize == 128) { return here & 0xFFFFFFC0; } if (param.pagesize == 256) { return here & 0xFFFFFF80; } return here; } void write_flash(int length) { fill(length); if (CRC_EOP == getch()) { SERIAL.print((char) STK_INSYNC); SERIAL.print((char) write_flash_pages(length)); } else { error++; SERIAL.print((char) STK_NOSYNC); } } uint8_t write_flash_pages(int length) { int x = 0; unsigned int page = current_page(); while (x 《 length) { if (page != current_page()) { commit(page); page = current_page(); } flash(LOW, here, buff[x++]); flash(HIGH, here, buff[x++]); here++; } commit(page); return STK_OK; } #define EECHUNK (32) uint8_t write_eeprom(unsigned int length) { // here is a word address, get the byte address unsigned int start = here * 2; unsigned int remaining = length; if (length 》 param.eepromsize) { error++; return STK_FAILED; } while (remaining 》 EECHUNK) { write_eeprom_chunk(start, EECHUNK); start += EECHUNK; remaining -= EECHUNK; } write_eeprom_chunk(start, remaining); return STK_OK; } // write (length) bytes, (start) is a byte address uint8_t write_eeprom_chunk(unsigned int start, unsigned int length) { // this writes byte-by-byte, // page writing may be faster (4 bytes at a time) fill(length); prog_lamp(LOW); for (unsigned int x = 0; x 《 length; x++) { unsigned int addr = start + x; spi_transaction(0xC0, (addr 》》 8) & 0xFF, addr & 0xFF, buff[x]); delay(45); } prog_lamp(HIGH); return STK_OK; } void program_page() { char result = (char) STK_FAILED; unsigned int length = 256 * getch(); length += getch(); char memtype = getch(); // flash memory @here, (length) bytes if (memtype == ’F‘) { write_flash(length); return; } if (memtype == ’E‘) { result = (char)write_eeprom(length); if (CRC_EOP == getch()) { SERIAL.print((char) STK_INSYNC); SERIAL.print(result); } else { error++; SERIAL.print((char) STK_NOSYNC); } return; } SERIAL.print((char)STK_FAILED); return; } uint8_t flash_read(uint8_t hilo, unsigned int addr) { return spi_transaction(0x20 + hilo * 8, (addr 》》 8) & 0xFF, addr & 0xFF, 0); } char flash_read_page(int length) { for (int x = 0; x 《 length; x += 2) { uint8_t low = flash_read(LOW, here); SERIAL.print((char) low); uint8_t high = flash_read(HIGH, here); SERIAL.print((char) high); here++; } return STK_OK; } char eeprom_read_page(int length) { // here again we have a word address int start = here * 2; for (int x = 0; x 《 length; x++) { int addr = start + x; uint8_t ee = spi_transaction(0xA0, (addr 》》 8) & 0xFF, addr & 0xFF, 0xFF); SERIAL.print((char) ee); } return STK_OK; } void read_page() { char result = (char)STK_FAILED; int length = 256 * getch(); length += getch(); char memtype = getch(); if (CRC_EOP != getch()) { error++; SERIAL.print((char) STK_NOSYNC); return; } SERIAL.print((char) STK_INSYNC); if (memtype == ’F‘) result = flash_read_page(length); if (memtype == ’E‘) result = eeprom_read_page(length); SERIAL.print(result); } void read_signature() { if (CRC_EOP != getch()) { error++; SERIAL.print((char) STK_NOSYNC); return; } SERIAL.print((char) STK_INSYNC); uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00); SERIAL.print((char) high); uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00); SERIAL.print((char) middle); uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00); SERIAL.print((char) low); SERIAL.print((char) STK_OK); } // // void avrisp() { uint8_t ch = getch(); switch (ch) { case ’0‘: // signon error = 0; empty_reply(); break; case ’1‘: if (getch() == CRC_EOP) { SERIAL.print((char) STK_INSYNC); SERIAL.print(“AVR ISP”); SERIAL.print((char) STK_OK); } else { error++; SERIAL.print((char) STK_NOSYNC); } break; case ’A‘: get_version(getch()); break; case ’B‘: fill(20); set_parameters(); empty_reply(); break; case ’E‘: // extended parameters - ignore for now fill(5); empty_reply(); break; case ’P‘: if (!pmode) start_pmode(); empty_reply(); break; case ’U‘: // set address (word) here = getch(); here += 256 * getch(); empty_reply(); break; case 0x60: //STK_PROG_FLASH getch(); // low addr getch(); // high addr empty_reply(); break; case 0x61: //STK_PROG_DATA getch(); // data empty_reply(); break; case 0x64: //STK_PROG_PAGE program_page(); break; case 0x74: //STK_READ_PAGE ’t‘ read_page(); break; case ’V‘: //0x56 universal(); break; case ’Q‘: //0x51 error = 0; end_pmode(); empty_reply(); break; case 0x75: //STK_READ_SIGN ’u‘ read_signature(); break; // expecting a command, not CRC_EOP // this is how we can get back in sync case CRC_EOP: error++; SERIAL.print((char) STK_NOSYNC); break; // anything else we will return STK_UNKNOWN default: error++; if (CRC_EOP == getch()) SERIAL.print((char)STK_UNKNOWN); else SERIAL.print((char)STK_NOSYNC); } } 接下来就去引导加载程序通过这个板子烧到目标板子里面,首先在菜单里面工具-》编程器-》arduino as isp 选择选择开发板型号菜单的-》工具-》开发板:-》arduino/genuino mega或mega 2560 选择处理器菜单-》工具-》处理器-》atmega2560(Mega 2560) 烧写写引导程序菜单-》工具-》烧录引导程序 亮灯会一闪一闪,就在烧写了,电容一定要接上,菜烧不了,我是这样。 |
|
|
|
只有小组成员才能发言,加入小组>>
2565 浏览 0 评论
763浏览 1评论
524浏览 0评论
276浏览 0评论
458浏览 0评论
小黑屋| 手机版| Archiver| 德赢Vwin官网 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-30 21:20 , Processed in 1.158924 second(s), Total 79, Slave 61 queries .
Powered by 德赢Vwin官网 网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
德赢Vwin官网 观察
版权所有 © 湖南华秋数字科技有限公司
德赢Vwin官网 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号