1
完善资料让更多小伙伴认识你,还能领取20积分哦, 立即完善>
扫一扫,分享给好友
库函数版 USART.h #ifndef __USART_H #define __USART_H #include "stdio.h" #include "sys.h" #define USART_REC_LEN 200 //定义最大接收字节数 200 #define EN_USART1_RX 1 //使能(1)/禁止(0)串口1接收 extern u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节.末字节为换行符 extern u16 USART_RX_STA; //接收状态标记 void uart_init(u32 bound); //USART初始化 #endif USART.c #include "sys.h" #include "usart.h" #if 1 #pragma import(__use_no_semihosting) //标准库需要的支持函数 struct __FILE { int handle; }; FILE __stdout; //定义_sys_exit()以避免使用半主机模式 _sys_exit(int x) { x = x; } //重定义fputc函数 int fputc(int ch, FILE *f) { while((USART1->SR&0X40)==0);//循环发送,直到发送完毕 USART1->DR = (u8) ch; return ch; } #endif #if EN_USART1_RX //如果使能了接收 //串口1中断服务程序 //注意,读取USARTx->SR能避免莫名其妙的错误 u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节. //接收状态 //bit15, 接收完成标志 //bit14, 接收到0x0d //bit13~0, 接收到的有效字节数目 u16 USART_RX_STA=0; //接收状态标记 void uart_init(u32 bound){ //GPIO端口设置 GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE); //使能USART1,GPIOA时钟 //USART1_TX GPIOA.9 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.9 //USART1_RX GPIOA.10初始化 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入 GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIOA.10 //Usart1 NVIC 配置 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //子优先级3 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能 NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器 //USART 初始化设置 USART_InitStructure.USART_BaudRate = bound;//串口波特率 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure); //初始化串口1 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//开启串口接受中断 USART_Cmd(USART1, ENABLE); //使能串口1 } void USART1_IRQHandler(void) //串口1中断服务程序 { u8 Res; if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾) { Res =USART_ReceiveData(USART1); //读取接收到的数据 if((USART_RX_STA&0x8000)==0)//接收未完成 { if(USART_RX_STA&0x4000)//接收到了0x0d { if(Res!=0x0a)USART_RX_STA=0;//接收错误,重新开始 else USART_RX_STA|=0x8000; //接收完成了 } else //还没收到0X0D { if(Res==0x0d)USART_RX_STA|=0x4000; else { USART_RX_BUF[USART_RX_STA&0X3FFF]=Res ; USART_RX_STA++; if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收 } } } } } #endif 这里定义了一个GPIO_InitTypeDef结构体来设置GPIO口初始化数据代码如下: typedef struct { uint16_t GPIO_Pin; /*!< Specifies the GPIO pins to be configured. This parameter can be any value of @ref GPIO_pins_define */ 指定要配置的GPIO PINS。 GPIOSpeed_TypeDef GPIO_Speed; /*!< Specifies the speed for the selected pins. This parameter can be a value of @ref GPIOSpeed_TypeDef */ 指定选定管脚的速度。 GPIOMode_TypeDef GPIO_Mode; /*!< Specifies the operating mode for the selected pins. This parameter can be a value of @ref GPIOMode_TypeDef */ 指定所选管脚的操作模式。 }GPIO_InitTypeDef; 用来设置指定要配置的GPIO。 这里还有定义了一个USART_InitTypeDef结构体来设置串口信息,代码如下: typedef struct { uint32_t USART_BaudRate; /*!< This member configures the USART communication baud rate. The baud rate is computed using the following formula: - IntegerDivider = ((PCLKx) / (16 * (USART_InitStruct->USART_BaudRate))) - FractionalDivider = ((IntegerDivider - ((u32) IntegerDivider)) * 16) + 0.5 */ - 设置波特率 uint16_t USART_WordLength; /*!< Specifies the number of data bits transmitted or received in a frame. This parameter can be a value of @ref USART_Word_Length */ 设置字长格式 uint16_t USART_StopBits; /*!< Specifies the number of stop bits transmitted. This parameter can be a value of @ref USART_Stop_Bits */ 设置停止位 uint16_t USART_Parity; /*!< Specifies the parity mode. This parameter can be a value of @ref USART_Parity @note When parity is enabled, the computed parity is inserted at the MSB position of the transmitted data (9th bit when the word length is set to 9 data bits; 8th bit when the word length is set to 8 data bits). */ 设置校验方式 uint16_t USART_Mode; /*!< Specifies wether the Receive or Transmit mode is enabled or disabled. This parameter can be a value of @ref USART_Mode */ 设置收发模式 uint16_t USART_HardwareFlowControl; /*!< Specifies wether the hardware flow control mode is enabled or disabled. This parameter can be a value of @ref USART_Hardware_Flow_Control */ 设置硬件数据流控制 } USART_InitTypeDef; 这里还定义了一个NVIC_InitTypeDef结构体来设置中断优先级,代码如下: typedef struct { uint8_t NVIC_IRQChannel; /*!< Specifies the IRQ channel to be enabled or disabled. This parameter can be a value of @ref IRQn_Type (For the complete STM32 Devices IRQ Channels list, please refer to stm32f10x.h file) */ 指定要启用或禁用的IRQ通道 uint8_t NVIC_IRQChannelPreemptionPriority; /*!< Specifies the pre-emption priority for the IRQ channel specified in NVIC_IRQChannel. This parameter can be a value between 0 and 15 as described in the table @ref NVIC_Priority_Table */ 指定IRQ通道的优先级 uint8_t NVIC_IRQChannelSubPriority; /*!< Specifies the subpriority level for the IRQ channel specified in NVIC_IRQChannel. This parameter can be a value between 0 and 15 as described in the table @ref NVIC_Priority_Table */ 为指定的IRQ通道指定子优先级级别 FunctionalState NVIC_IRQChannelCmd; /*!< Specifies whether the IRQ channel defined in NVIC_IRQChannel will be enabled or disabled. This parameter can be set either to ENABLE or DISABLE */ 指定是否在NVIC IrqChannel中定义IRQ通道 } NVIC_InitTypeDef; /** * @} */ /** @defgroup NVIC_Priority_Table * @{ */ /** @code The table below gives the allowed values of the pre-emption priority and subpriority according to the Priority Grouping configuration performed by NVIC_PriorityGroupConfig function ============================================================================================================================ NVIC_PriorityGroup | NVIC_IRQChannelPreemptionPriority | NVIC_IRQChannelSubPriority | Description ============================================================================================================================ NVIC_PriorityGroup_0 | 0 | 0-15 | 0 bits for pre-emption priority | | | 4 bits for subpriority ---------------------------------------------------------------------------------------------------------------------------- NVIC_PriorityGroup_1 | 0-1 | 0-7 | 1 bits for pre-emption priority | | | 3 bits for subpriority ---------------------------------------------------------------------------------------------------------------------------- NVIC_PriorityGroup_2 | 0-3 | 0-3 | 2 bits for pre-emption priority | | | 2 bits for subpriority ---------------------------------------------------------------------------------------------------------------------------- NVIC_PriorityGroup_3 | 0-7 | 0-1 | 3 bits for pre-emption priority | | | 1 bits for subpriority ---------------------------------------------------------------------------------------------------------------------------- NVIC_PriorityGroup_4 | 0-15 | 0 | 4 bits for pre-emption priority | | | 0 bits for subpriority ============================================================================================================================ @endcode */ 然后调用了一个 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);时钟函数来初始化usart1和gpio时钟 具体代码如下: //功能为打开或关闭对应的外设输出时钟端口 void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) { assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); //参数纠正 assert_param(IS_FUNCTIONAL_STATE(NewState)); //参数验证 /*参考结构体RCC_TypeDef,APB2NR为外设时钟使能寄存器,偏移地址0x18 */ if (NewState != DISABLE) { RCC->APB2ENR |= RCC_APB2Periph; //打开对应的外设时钟输出口 } else { RCC->APB2ENR &= ~RCC_APB2Periph;//关闭对应的外设时钟输出口 } } main.c文件 main.c #include "delay.h" #include "sys.h" #include "usart.h" int main(void) { u16 t; u16 len; delay_init(); //延时函数初始化 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 uart_init(115200); //串口初始化为115200 while(1) { if(USART_RX_STA&0x8000) { len=USART_RX_STA&0x3fff;//得到此次接收到的数据长度 printf("rn您发送的消息为:rnrn"); for(t=0;t USART_SendData(USART1, USART_RX_BUF[t]);//向串口1发送数据 while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);//等待发送结束 } printf("rnrn");//插入换行 USART_RX_STA=0; } } } 寄存器版 usart.h usart.h与库函数版本一致 usart.c //加入以下代码,支持printf函数 #if 1 #pragma import(__use_no_semihosting) //标准库需要的支持函数 struct __FILE { int handle; /* Whatever you require here. If the only file you are using is */ /* standard output using printf() for debugging, no file handling */ /* is required. */ }; /* FILE is typedef’ d in stdio.h. */ FILE __stdout; //定义_sys_exit()以避免使用半主机模式 _sys_exit(int x) { x = x; } //重定向fputc函数 //printf的输出,指向fputc,由fputc输出到串口 //这里使用串口1(USART1)输出printf信息 int fputc(int ch, FILE *f) { while((USART1->SR&0X40)==0);//等待上一次串口数据发送完成 USART1->DR = (u8) ch; //写DR,串口1将发送数据 return ch; } #endif //end #if EN_USART1_RX //如果使能了接收 //串口1中断服务程序 //注意,读取USARTx->SR能避免莫名其妙的错误 u8 USART_RX_BUF[USART_REC_LEN]; //接收缓冲,最大USART_REC_LEN个字节. //接收状态 //bit15, 接收完成标志 //bit14, 接收到0x0d //bit13~0, 接收到的有效字节数目 u16 USART_RX_STA=0; //接收状态标记 void USART1_IRQHandler(void) //串口接收中断函数 { u8 res; if(USART1->SR&(1<<5)) //接收到数据 { res=USART1->DR; if((USART_RX_STA&0x8000)==0)//接收未完成 { if(USART_RX_STA&0x4000)//接收到了0x0d { if(res!=0x0a)USART_RX_STA=0;//接收错误,重新开始 else USART_RX_STA|=0x8000; //接收完成了 }else //还没收到0X0D { if(res==0x0d)USART_RX_STA|=0x4000; else { USART_RX_BUF[USART_RX_STA&0X3FFF]=res; USART_RX_STA++; if(USART_RX_STA>(USART_REC_LEN-1))USART_RX_STA=0;//接收数据错误,重新开始接收 } } } } } #endif //初始化IO 串口1 //pclk2:PCLK2时钟频率(Mhz) //bound:波特率 void uart_init(u32 pclk2,u32 bound) { float temp; u16 mantissa; u16 fraction; temp=(float)(pclk2*1000000)/(bound*16);//得到USARTDIV mantissa=temp; //得到整数部分 fraction=(temp-mantissa)*16; //得到小数部分 mantissa<<=4; mantissa+=fraction; RCC->APB2ENR|=1<<2; //使能PORTA口时钟 RCC->APB2ENR|=1<<14; //使能串口时钟 GPIOA->CRH&=0XFFFFF00F;//IO状态设置 GPIOA->CRH|=0X000008B0;//IO状态设置 RCC->APB2RSTR|=1<<14; //复位串口1 RCC->APB2RSTR&=~(1<<14);//停止复位 //波特率设置 USART1->BRR=mantissa; // 波特率设置 USART1->CR1|=0X200C; //1位停止,无校验位. #if EN_USART1_RX //如果使能了接收 //使能接收中断 USART1->CR1|=1<<5; //接收缓冲区非空中断使能 MY_NVIC_Init(3,3,USART1_IRQn,2);//组2,最低优先级 #endif } main.c文件 #include "sys.h" #include "usart.h" #include "delay.h" int main(void) { u16 t; u16 len; Stm32_Clock_Init(9); //系统时钟设置 uart_init(72,115200); //串口初始化为115200 delay_init(72); //延时初始化 LED_Init(); //初始化与LED连接的硬件接口 while(1) { if(USART_RX_STA&0x8000) { len=USART_RX_STA&0x3FFF;//得到此次接收到的数据长度 for(t=0;t USART1->DR=USART_RX_BUF[t]; while((USART1->SR&0X40)==0);//等待发送结束 } USART_RX_STA=0; } } } 注USART寄存器TX中断标志位清零的方法是往DR寄存器写入数据或者手动清零,而置位的方法是等DR里面的数据从TX引脚上全部发出来。 |
|
|
|
只有小组成员才能发言,加入小组>>
调试STM32H750的FMC总线读写PSRAM遇到的问题求解?
1820 浏览 1 评论
X-NUCLEO-IHM08M1板文档中输出电流为15Arms,15Arms是怎么得出来的呢?
1634 浏览 1 评论
1104 浏览 2 评论
STM32F030F4 HSI时钟温度测试过不去是怎么回事?
740 浏览 2 评论
ST25R3916能否对ISO15693的标签芯片进行分区域写密码?
1692 浏览 2 评论
1951浏览 9评论
STM32仿真器是选择ST-LINK还是选择J-LINK?各有什么优势啊?
756浏览 4评论
STM32F0_TIM2输出pwm2后OLED变暗或者系统重启是怎么回事?
586浏览 3评论
605浏览 3评论
stm32cubemx生成mdk-arm v4项目文件无法打开是什么原因导致的?
568浏览 3评论
小黑屋| 手机版| Archiver| 德赢Vwin官网 ( 湘ICP备2023018690号 )
GMT+8, 2024-12-30 22:47 , Processed in 0.764351 second(s), Total 78, Slave 62 queries .
Powered by 德赢Vwin官网 网
© 2015 bbs.elecfans.com
关注我们的微信
下载发烧友APP
德赢Vwin官网 观察
版权所有 © 湖南华秋数字科技有限公司
德赢Vwin官网 (电路图) 湘公网安备 43011202000918 号 电信与信息服务业务经营许可证:合字B2-20210191 工商网监 湘ICP备2023018690号