图1. 简化的 LLC DC/DC 谐振转换器,采用二极管作为输出整流器
高频率 LLC DC/DC 转换器的模拟
利用 LTspice 对 SiC MOSFET 的性能以及影响转换器效率的因素进行模拟研究。图 1 显示的是一个全桥 LLC DC/DC 转换器的简化原理图。当开关频率为 500 kHz,磁化电感 Lm = 30 µH 时,四个初级开关的模拟总功耗为 80.24 W(每个 20.06 W),由于所有主开关的 ZVS 导通,二极管作为输出整流器,总效率达到 98.11%。
较大的磁化电感 Lm 可以减小磁化电流,降低初级开关的导通损耗;但 Lm 的取值也需要提供足够的磁化电流来使漏极-源极电容完全放电,并确保在死区期间初级开关 ZVS 的导通。因此,Lm 应满足 (1) 。
其中,td 是上、下开关两个栅极驱动信号之间的死区时间,fs 是开关频率,CTotal 是总电容,包括初级开关的漏极-源极电容、PCB 的寄生电容和次级侧二极管的反射电容。对于给定的死区时间 td,可以根据 (1) 对 Lm 进行优化设计,实现正常工作时的高效率。
设计注意事项
LLC 变压器的设计
用 (1) 计算出最大磁化电感后,进行高频率操作时,需要仔细考虑磁芯材料、气隙和导线尺寸,否则会造成极大的功率损耗,导致变压器因过热而发生意外故障。在适用于高频率的磁芯材料中,选择了 Acme 的 P61,因为它的功率损耗低,而且易于获得用于大功率应用的磁芯形状,开关频率范围从 500 kHz 到 1 MHz。初步测试使用了 PQ50/28 磁芯。一次绕组(ɸ 0.05 mm × 360 × 4)和二次绕组(ɸ 0.05 mm × 400 × 2
tiW)都使用 Litz 导线,每个绕组有 9 圈。为了减少由气隙附近的边缘磁通引起的铜损,使用了三个分布式气隙而不是一个大的气隙,如图 2 所示。
PCB 布局
PCB 布局对 EMI、信号完整性以及电路效率和操作起着至关重要的作用,尤其是对于高频率 LLC 转换器而言。图 3 显示了 LLC 转换器实验 PCB 中存在的寄生电容(版本 1 和版本 2)。版本 1 的 PCB 采用了较大面积的铜片,目的是为了减少 PCB 线路的功率损耗和消除电流回路的磁场;但是,由于不同铜层之间存在较大面积的重叠,因此产生了表 I 所示的较大寄生电容。版本 2 的 PCB 的铜线和迹线重叠区域小得多,因此其产生的寄生电容大大降低。使用手持 LRC 测量仪在裸露的 PCB(没有填充任何部件)上测量寄生电容。在 LLC 电路中,开关(CP1-CP4)、变压器绕组(CP8-CP10)和初级侧中点(CP11)之间的大寄生电容会导致不希望出现的效率下降(如表 1 所示,测得效率下降了 0.8%,功率损耗增加了 26 W)。因此,需要在降低铜损和寄生效应之间进行权衡。
表1. 测得寄生电容(单位:pF)与性能对比
图 2. 将漏电感用作谐振电感的薄型变压器(PQ50/28P61):
(a) 带有分布式气隙的磁芯,(b) 变压器实验样机
图 3. PCB 上的寄生电容
实验结果
图 4 显示的是功率密度为 128 W/in3 的原型图,初级开关采用 TO-247-3 封装的 SiC MOSFET(C3M0060065D,60 mΩ / 650 V),输出整流器采用 TO-220 封装的 SiC 二极管(C6D10065A,10 A / 650 V)。由于高频率操作,谐振电感采用了主变压器的漏电感(1 µH),因而不需要外部电感。基于 TI DSP 的控制卡(TMDSCNCD280049C)用于产生开环操作或闭环操作所需的栅极驱动信号,以调节输出电压。辅助电源(Wolfspeed 提供的 CRD-15DD17P)为控制电路和栅极驱动器供电。
图 4. 高频率 LLC 转换器原型的照片
图 5 显示了在 400 V / 16 A 直流输出下,测量效率与开关频率的关系。最佳开关频率范围为 500 kHz 到 650 kHz,效率无明显下降。随着开关频率的增加,效率的下降主要是由于 LLC 变压器 [7]-[9] 中与频率相关的铜损和磁芯损耗增加,以及 PCB 线路损耗。频率从 500 kHz 增加到 1 MHz 时,栅极驱动导致的功耗增加了 2.2 W,而每个 MOSFET 的功耗增加了 3.5 W(模拟时从 20.06 W 增加到 23.56 W)。图 6 显示了开环操作中效率与输出功率的关系图。在半负载(约 3 kW)时,可实现约 98.5% 的峰值效率。图 7 显示了初级侧上开关捕获的栅极-源极和漏极-源极波形,以及在 550 kHz 和 400 V 输入时初级侧谐振电流波形。
此外,我们还与初级侧开关的 Si 基功率器件(友商的 IPW60R70CFD7,57 mΩ / 600 V)进行了对比测试。与 Si 基 MOSFET 相比,SiC 基 Wolfspeed 器件 C3M0060065D 的导通电阻随结温升高而增加的幅度要小得多。图 8 显示了这两种器件的导通电阻与温度的关系图。在 150 °C 时,SiC 器件的归一化导通电阻为 1.3,而 Si 基器件则达到 2.3。图 9 显示了不同功率器件的效率与输出功率的关系图。Si 基 MOSFET 由于其导通电阻随温度的升高而显著增加,开关损耗较大,在高功率时效率降低 1%,在相同的散热条件下已进入热失控状态。
图 5. 效率与开关频率的关系图
图 6. SiC 器件效率与输出功率的关系图
图 7. 捕获的栅极-源极电压 [黄线:10 V/div.]、漏极-源极电压 [绿线:100 V /div.] 以及初级电流 [红线:25 A/div.] 波形,频率为 500 kHz,时标为 500 ns/div.
图 8. 归一化导通电阻随结温的增加而增加:红线 - Si 基器件,黑线 - SiC 基器件
图 9. Si 基和 SiC 基 MOSFET 在 550 kHz 和 390 V 输入时的效率与输出功率的关系图
图 10. 捕获的栅极-源极电压 [黄线:10 V/div.]、漏极-源极电压 [绿线:100 V/div.] 以及初级电流 [红线:25 A/div.] 波形,频率为 500 kHz,关断 MOSFTE 时无负电压,时标为 500 ns/ div.
图 11. 负压驱动和无负压驱动时的效率与输出功率关系图
对于在半桥或全桥电路中使用的 MOSFET 的关断,通常建议使用负栅极驱动电压(对于 C3M006065D 为-3 V ~ -4 V),以防止因高 dv/dt 引起的串扰而导致快速开关器件的误导通。但是,在 LLC 电路中,所有开关都是在零电压下通过软开关导通的,所以 dv/dt 要低得多,不会发生严重的串扰。因此,可以不需要开关关断的负电压,以降低驱动电路的复杂度和成本。图 10 显示了在没有栅极驱动负电压情况下捕获的波形。从图 11 中未观察到异常栅极驱动信号,也未看到明显的效率差异。
结论
本文介绍了一种采用 SiC MOSFET 和集成磁性元件的 LLC 谐振 DC/DC 转换器,并在 500 kHz - 1.5 MHz 范围内进行了全面测试。研究发现,精心设计的 PCB 布局和变压器是实现高转换效率的关键。在功率密度为 128 W/in3 的情况下,获得了超过 98% 的峰值效率。测试效率数据和捕获的波形表明,SiC MOSFET 在比传统 Si 基器件高得多的频率下操作时具有优越的性能。此外,测试表明,在谐振 LLC 拓扑中,由于 ZVS 引起的串扰较小,即使在没有用于关断功率器件的负驱动电压的情况下,SiC MOSFET 也能够可靠地操作,因此降低了驱动的复杂度和成本。这些宽禁带器件在各种应用中为高效率、高功率密度的功率转换提供了前所未有的机会。未来的研究将把平面磁性元件与表面贴装功率器件结合起来,以实现更高功率密度转换器的设计。
原作者: Wolfspeed WOLFSPEED