无参数近邻保持及最大化非近邻算法
大小:0.73 MB
人气:
2018-01-05
需要积分:1
标签:
无参数保持投影算法无需参数设置且识别性能稳定,但算法不能有效地保持样本的局部结构,且忽略了非局部样本所起的作用,而且存在着小样本( sss)问题,为此提出了一种完备的无参数近邻保持及最大化非近邻算法。算法以样本间余弦距离0.5为分界点将样本分成近邻及非近邻样本,为了充分利用近邻样本及非近邻样本,分别构造了近邻散度矩阵及非近邻散度矩阵,因此算法的目标函数就是求取能够最小化近邻散度矩阵的同时,最大化非近邻散度矩阵的投影矩阵。对于目标函数的求解,可先将高维样本通过主成分分析(PCA)算法降至一个低维的予空间,并通过两个定理证明了这种处理方法没有损失任何有效的判别信息;然后将目标函数转换为差形式,从而有效地解决了小样本问题。在人脸库及掌纹库上的实验结果表明,与无参数局部保持投影算法相比,所提算法平均识别率更高,验证了算法的有效性。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%