1 深度学习与对象检测之人脸识别-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习与对象检测之人脸识别

倩倩 来源:lq 作者:SandaG 2019-09-20 16:18 次阅读

通过往期的分享,我们了解到人脸识别的大概过程,主要包括:

1、人脸图片的搜集(原始数据)

2、从图片中识别到人脸

3、人脸数据提取

4、人脸数据保存

5、从图片或者视频中检测到人脸

6、人脸数据提取

7、被识别的人脸与数据库中的数据一一对比,识别出人脸

以上人脸识别过程,存在一定的问题,当人脸原始数据比较大时,数据库中必然存在比较多的人脸数据,当进行人脸识别时,被识别的人脸与数据库中的数据对比时,必然会消耗大量的时间,对人脸实时识别的速度有较大的影响。受CNN卷积神经网络的启发,我们使用神经网络来进行人脸数据的训练,标签是人脸的名字,数据是人脸数据,使用神经网络对人脸数据进行训练,这样当数据比较大时,神经网络识别速度与正确率就越高,大大提高人脸识别的速度与正确率,这样人脸识别的过程便成为如下过程:

1、人脸图片的搜集(原始数据)

2、从图片中识别到人脸

3、人脸数据提取与保存

4、人脸数据与人脸标签的神经网络训练,保存训练模型

5、从图片或者视频中检测到人脸

6、识别到的人脸进行神经网络预测,进行人脸识别

本期介绍人脸数据的提取

1、人脸原始图片的搜集

要进行人脸识别,就要搜集用户的人脸图片,我们从网站上搜集了几个明星的照片来进行本期文章的分享。

首先在目录文件下新建一个dataset文件夹,里面放置多个文件夹,每个文件夹便是一个明星的照片,文件夹名称是明星的名字,目录类似如下:

2、设置人脸检测模型与人脸提取嵌入数据模型

人脸检测模型,我们直接使用 ResNet-10和SSD算法在caffe上面训练好的模型

人脸数据提取嵌入模型,使用OpenFace的openface_nn4.small2.v1.t7模型,此模型训练在pytorch上,可以直接使用opencv来进行加载

脸检测模型与人脸提取嵌入数据模型

3、初始化图片地址,初始化人脸数据数组与人脸名称标签数组

初始化人脸数据

4、遍历整个dataset目录,进行图片处理

30行提取了文件夹的名称,此名称便是后期需要保存的label值

33-35行,进行了图片的读取以及resize处理

38行计算图片的blob值

43-44行,把图片的blob值放入人脸检测神经网络进行人脸的检测

47行,当在图片中检测到 人脸时,其神经网络的len值会大于0

50行,当检测到人脸时,我们提取人脸的置信度

53行设计人脸置信度为0.5

55-59行,计算人脸在图片中的位置,并提取人脸的尺寸

61-62行,当人脸尺寸较小时 ,我们忽略此人脸信息,选择图片中人脸比较大的人脸

64行,当人脸图片尺寸符合要求时,我们计算人脸的blob值

67-68行,把人脸图片的blob值传递人脸嵌入数据神经网络

71-72行,保存人脸的label与人脸数据到数组中

5、保存人脸数据

当遍历完成后,dataset中的所有的人脸数据便保存在了事先建立的数组中

77行,新建一个字典数据,把人脸的label以及人脸数据保存到本地,方便后期进行神经网络的训练

以上5步便完成了整个人脸的数据采集,当然,若想后期人脸识别的精度较高,需要进行大量的人脸数据搜集。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100704
  • 数据模型
    +关注

    关注

    0

    文章

    49

    浏览量

    10001
  • 人脸识别
    +关注

    关注

    76

    文章

    4011

    浏览量

    81850
收藏 人收藏

    评论

    相关推荐

    如何用OpenCV的相机捕捉视频进行人脸检测--基于米尔NXP i.MX93开发板

    的是Haar特征人脸检测,此外OpenCV中还集成了深度学习方法来实现人脸检测。 【参考资料】
    发表于 11-15 17:58

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二
    的头像 发表于 10-27 11:13 378次阅读

    深度识别算法包括哪些内容

    :CNN是深度学习中处理图像和视频等具有网格结构数据的主要算法。它通过卷积层、池化层和全连接层等组件,实现对图像特征的自动提取和识别。 应用领域 :CNN在图像识别、目标
    的头像 发表于 09-10 15:28 362次阅读

    深度识别人脸识别有什么重要作用吗

    深度学习人脸识别技术是人工智能领域的一个重要分支,它利用深度学习算法来
    的头像 发表于 09-10 14:55 497次阅读

    深度识别人脸识别在任务中为什么有很强大的建模能力

    深度学习人脸识别技术是人工智能领域中的一个重要分支,它利用深度学习算法来
    的头像 发表于 09-10 14:53 368次阅读

    基于Python的深度学习人脸识别方法

    基于Python的深度学习人脸识别方法是一个涉及多个技术领域的复杂话题,包括计算机视觉、深度学习
    的头像 发表于 07-14 11:52 1249次阅读

    基于深度学习的无人机检测识别技术

    随着无人机技术的快速发展,无人机在军事、民用、商业等多个领域的应用日益广泛。然而,无人机的广泛使用也带来了诸多挑战,如空域安全、隐私保护等问题。因此,开发高效、准确的无人机检测识别技术显得尤为重要。本文将深入探讨基于深度
    的头像 发表于 07-08 10:32 1200次阅读

    基于深度学习的小目标检测

    在计算机视觉领域,目标检测一直是研究的热点和难点之一。特别是在小目标检测方面,由于小目标在图像中所占比例小、特征不明显,使得检测难度显著增加。随着深度
    的头像 发表于 07-04 17:25 849次阅读

    人脸识别技术的优缺点有哪些

    人脸识别技术是一种基于人脸特征信息进行身份识别的生物识别技术。随着计算机视觉、深度
    的头像 发表于 07-04 09:25 2173次阅读

    人脸识别技术的原理介绍

    的应用。本文将详细介绍人脸识别技术的原理,包括人脸检测人脸特征提取、人脸匹配等关键步骤。 一、
    的头像 发表于 07-04 09:22 1146次阅读

    人脸识别模型训练是什么意思

    人脸识别模型训练是指通过大量的人脸数据,使用机器学习深度学习算法,训练出一个能够
    的头像 发表于 07-04 09:16 573次阅读

    人脸检测模型有哪些

    人脸检测是计算机视觉领域的一个重要研究方向,它涉及到从图像或视频中检测出人脸的位置和大小。随着深度学习技术的发展,
    的头像 发表于 07-03 17:05 1002次阅读

    人脸检测人脸识别的区别是什么

    人脸检测人脸识别是计算机视觉领域的两个重要技术,它们在许多应用场景中都有广泛的应用,如安全监控、身份验证、社交媒体等。尽管它们在某些方面有相似之处,但它们之间存在一些关键的区别。本文
    的头像 发表于 07-03 14:49 1163次阅读

    人脸检测识别的方法有哪些

    人脸检测识别是计算机视觉领域中的一个重要研究方向,具有广泛的应用前景,如安全监控、身份认证、智能视频分析等。本文将详细介绍人脸检测
    的头像 发表于 07-03 14:45 702次阅读

    人脸识别技术的原理是什么 人脸识别技术的特点有哪些

    人脸识别技术的原理 人脸识别技术是一种通过计算机以图像或视频为输入,识别检测、跟踪和分析
    的头像 发表于 02-18 13:52 1867次阅读