数据驱动能做什么?我们认为主要包含驱动决策、驱动产品智能两方面的价值。本文分享以下内容:
1、数据驱动价值:驱动决策、驱动产品智能
2、数据驱动闭环:数据采集—数据建模—数据分析—数据反馈
3、数据驱动各环节方法与实践
本文根据神策数据联合创始人& CTO 曹犟在发表题为《数据驱动从方法到实践》演讲整理所得,请您欣赏!
这个是我之前一个产品同事发给我的,他说这些是产品关心的指标。
因为我是工程师出身,我根本不懂这些东西,但是我知道怎么改进产品:我们把这些指标全部算出来,进行监控,一旦发现某一个指标异常,立刻分析原因,并解决这些原因。
如果指标没有异常,可以和别人家进行对比,你的转化率是多少,我的转化率是多少,看我们有多少提升空间,来提升指标。
所以,整个逻辑很简单,先设置关心的问题,实际算出来,并关注是否异常,找到异常原因,分析解决异常,看数据有没有真正得到上升。
场景 1:内容产品的“Aha Moment”
通过用户行为将用户群体划分成四类:路人、打酱油、参与(点赞、转发)、深度参与,如何提升这四类人的用户留存?
很简单,首先我观察四类人的留存率,很明显,行为深度越深,用户留存肯定越高。
那该怎么操作?
扩大“参与行为”使用者面积,门槛太高,落地性较差;扩大“围观行为”使用者面积?这个方法更可行,在产品信息流页露出“热评”,可以提升留存,来验证新增“热评”之后效果如何。
场景 2:电商,收藏按钮位置改版
某电商的首页存在两个“收藏”,一开始设置有点问题,一个点击率极高,一个点击率极低。显而易见,浪费了非常重要的位置。后来将点击率低的收藏按钮位置换成了“服务”的按钮,经过验证,点击进入量没有明显下降,同时“服务”点击量提升。
经过 SA 中的数据对比发现,BEST 分类的点击流量并没有预想中高,甚至跟 MEN 分类的访问量差不多。猜想可能用户不习惯往左滑动页面,习惯往右滑动界面。
同时,该电商还进行了首页 BEST 分类按钮位置调整,将 BEST 类目放到 FUN 类目右边。效果:经过调整后,50% 以上的首页用户会进入 BEST 类目,比原来调整之前相对提高了 78% 。
场景 3:小程序的产品迭代案例
这是一个纯女性短视频社区案例,他们一直致力将数据分析融入到运营乃至产品迭代的最细节处。这是他们的工作方式。
该企业的小程序更新发版很快。用户分享之后裂变,有一个完整的看板让大家来评估的自己的影响。日裂变作为关键指标,某版本上线后发现裂变指数(uv 数 x 内部调整因子)迅速下跌。
图 18 某版本上线后发现裂变指数迅速下跌
通过回溯过去 7 日的分析看到:“分享”按钮的点击数据出现连续下滑,“下载”按钮的数据在出现大幅度提升。
图 19 回溯 7 日数据快速筛查可能原因
通过用户实际回访,确认“保存按钮”其实弱化了“分享意愿”,造成分享减少。次日晨完成新版本上线后,指标变得正常。
(4)运营
除了数据驱动产品迭代,下一个案例是用数据驱动运营,数据驱动运营同样是发现问题,分析原因,来验证效果。
图 20 基于数据的驱动闭环,驱动业务决策
六、反馈
最后给大家介绍几个重要闭环。
1. 用户运营的闭环反馈
我们推出了自动化运营的新产品,我们发现大家对产品运营自动化越来越高。
神策自动化运营是基于分群标签的全流程运营闭环分析系统,通过用户精准分群、灵活创建并管理营销活动计划,比如知道用户数据、业务数据,最终精准的刻画了用户画像。基于用户画像采用不同的触达方式,比如优惠券等。
做完之后,我可以分析衡量触达效果怎么样,从而评价营销效果。有了第一次营销效果之后,可以针对性的改进,做第二次营销效果。真正形成自动化、精细化的运营闭环。
图 21 用户运营闭环反馈
2. 产品智能闭环反馈
这是个性化推荐的全流程,包括采集各种不同的数据,构建相应的兴趣模型,特定的场景推荐下做推荐,不同纬度、不同指标做测量。
图 22 产品智能闭环反馈
东方明珠是神策数据的客户(东方明珠:融媒时代的大数据转型之路打造),以百视通 IPTV 某驻地为例,日活数百万用户通过 IPTV 机顶盒付费观看授权内容,部分精品内容需额外充值观看;在接入神策推荐之前,主要依赖人工推荐,以热门、付费和内容相关性为主要推荐参考。
为提升用户的观影体验、提高用户留存以及充值付费营收,东方明珠利用神策推荐解决方案,完成采集点击日志、展示日志、播放日志等所需用户行为数据,基于行为数据构建深度学习召回算法策略,采用 GBDT+LR 排序模型训练数据。
推荐算法上线两周后,神策推荐的效果,对比人工推荐,仅 CTR 一个指标即提升了 6 倍,对推荐内容的人均浏览次数提升了 1.9 倍。
责任编辑 LK
-
数据采集
+关注
关注
38文章
6052浏览量
113618 -
大数据
+关注
关注
64文章
8882浏览量
137391
发布评论请先 登录
相关推荐
评论