1 基于3D MEMS OXC的基本结构与应用范围分析-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于3D MEMS OXC的基本结构与应用范围分析

电子设计 来源:HYC亿源通 作者:佚名 2020-05-08 18:28 次阅读

OXC的应用领域

光交叉互连开关(OXC)是一种N×N端口的矩阵光开关,可用于构建CDC ROADM(无色、无方向性、无竞争的可重构光上/下路复用器),如图1所示。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图1. 基于WSS和OXC的CDC ROADM结构

基于1×N端口光开关构建的OXC

OXC可以通过1×N端口的光开关来构建,如图2所示,为了构建一个N×N端口的OXC模块,需要2N个1×N端口的光开关,随着端口数N的增加,OXC模块的尺寸和成本急剧增加,因此这种OXC的端口数通常限于32×32端口。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图2. 以16个1×8端口光开关构建8×8端口OXC

基于2D MEMS 技术的OXC

实现OXC的第二种技术方案是基于MEMS微镜阵列的Cross-Bar光开关,日本东京大学的H. Toshiyoshi和H. Fujita于1996年报道了第一个基于MEMS技术、具有端口扩展潜力的Cross-Bar光开关,如图3所示。所报道的器件只有2个输入端口和2个输出端口,光路切换是通过4个MEMS微镜来实现的,每个微镜有两个状态,平置于基片上让光束通过(Off状态)或者直立于基片上以反射光束(On状态)。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图3. 第一个基于MEMS扭镜的Cross-Bar矩阵光开关

MEMS芯片和单个微镜的SEM照片,以及扭镜的结构示意图,如图4所示。微镜以多晶硅梁支撑,当电极未加偏置电压时,微镜保持平置状态;加电时在静电引力的驱动下,微镜直立于基片上。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图4. MEMS扭镜的SEM照片和结构示意图

AT&T实验室的L.Y. Lin等人于1998年报道了第一个基于2D MEMS技术的矩阵光开关,如图5所示,为了实现N×N端口光开关,需要一个N×N规模的微镜阵列。该器件的所有光路都在一个平面内,这也是为何它被称为2D MEMS光开关。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图5. 第一个2D MEMS矩阵光开关结构

光路的切换是通过图6所示的微镜来实现的,微镜被铰链结构连接在基底上,两个拉杆的一端链接微镜,另一端链接一个位移台,位移台被一个刮板式微致动器驱动,把微镜向前拉。微镜在被拉动的过程中发生偏转。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图6. 微镜结构示意图

OMM公司的Li Fan等人于2002年报道了另一种用于矩阵开关的MEMS微镜阵列,如图7所示。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图7. OMM公司的Li Fan等人报道的2D MEMS微镜阵列

基于2D MEMS微镜阵列的矩阵光开关,具有结构简单和易于封装的优势,但是其扩展性有限。从图5中可以看到,对不同的端口链接关系,光路长度差别很大,这将会引入耦合损耗和影响损耗均匀性。对光程差异的容差取决于自由空间光学结构中的光束尺寸,根据式(1),光斑ω0越小则其越发散,根据式(2)得到其准直距离越短。

MEMS光学器件— MEMS OXC(光交叉互连开关)

两根单模光纤SMF之间的耦合情况如图8(a)所示,随着光纤端面之间的间距增大,耦合损耗剧增,两根单模光纤之间的间距,通常限于《20μm。为了增加光纤间距以容许放置各种自由空间光学元件,通常会采用热扩芯(TEC)光纤或者透镜光纤,分别如图8(b)和图8(c)所示。TEC光纤和透镜光纤都能扩大光斑尺寸,以适于自由空间光传输。两根TEC光纤之间的间距可达~10mm,而两根透镜光纤之间的间距可达~50mm。对于一些需要更长自由空间光路的应用领域(比如下文将要提到的3D MEMS光开关),往往需要准直透镜,如图8(d)所示。

图8. 光纤之间的耦合方式

因此我们知道,将TEC光纤或者透镜光纤应用于2D MEMS光开关中,有助于增加自由空间光路长度,以容纳更多的MEMS微镜,实现光开关端口的扩展。然而,允许的最大光斑尺寸受限于微镜的尺寸,而微镜尺寸取决于MEMS设计和工艺。通常要求微镜直径Ф》3ω0(ω0为光斑半径)以反射99%以上的光功率。因此,2D MEMS光开关的最大端口数通常限于32×32。

基于3D MEMS 技术的OXC

为了进一步扩展OXC的端口数,人们开发了3D MEMS光开关。3D MEMS OXC的基本结构如图9所示,它包括两个MEMS微镜阵列和两个二维光纤准直器阵列,每个输入光纤准直器与第一个MEMS芯片中的一个微镜对应,而每个输出光纤准直器与第二个MEMS芯片中的一个微镜对应,MEMS芯片上的所有微镜都能两轴偏转,如图10所示。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图9. NTT实验室开发的3D MEMS OXC的基本结构

MEMS光学器件— MEMS OXC(光交叉互连开关)

图10. MEMS微镜阵列和双轴微镜的扫描电镜SEM照片

来自每个输入端口的光束被第一个MEMS芯片上的一个微镜独立控制,通过双轴偏转指向第二个MEMS芯片上的另一个微镜(该微镜对应输出的目标端口),第二个微镜通过双轴偏转,调整反射光束的方向,指向输出端口。因此通过两个MEMS芯片的控制,可以将光信号从任意输入端口交换至任意输出端口。该3D MEMS OXC由NTT实验室于2003年10月报道,样机照片如图11所示。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图11. NTT实验室开发的3D MEMS OXC样机照片

贝尔实验室的V. A. Aksyuk等人于2003年4月报道了另一种3D MEMS OXC,比NTT实验室的报道时间更早,此处先提到NTT实验室的工作,因其OXC结构相对简单且易于分析。贝尔实验室开发的OXC结构和样机照片分别如图12和图13所示,它包括两个MEMS微镜阵列、两个二维光纤阵列和一个傅里叶透镜,每条输入—输出链路通过第一个MEMS芯片上的一个微镜和第二个MEMS芯片上的另一个微镜构建。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图12. 贝尔实验室开发的3D MEMS OXC结构

MEMS光学器件— MEMS OXC(光交叉互连开关)

图13. 贝尔实验室开发的3D MEMS OXC样机照片

NTT实验室的Yuko Kawajiri等人于2012年报道了另一个3D MEMS OXC,如图14和图15所示,其中以一个环形凹面反射镜代替傅里叶透镜。采用环形凹面镜可减少边缘端口的离轴像差,以减小插入损耗。

MEMS光学器件— MEMS OXC(光交叉互连开关)

图14. NTT实验室开发的第二种3D MEMS OXC结构

图15. NTT实验室开发的第二种3D MEMS OXC样机照片

图12和图14中的OXC原理相似,相对于图9中的OXC结构,自由空间光路中的光束尺寸更大,因此可减小损耗。另外,图9中的OXC结构,要求MEMS微镜具有更大的偏转角度,这会增加MEMS芯片的设计难度。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 开关
    +关注

    关注

    19

    文章

    3136

    浏览量

    93598
  • mems
    +关注

    关注

    129

    文章

    3924

    浏览量

    190577
收藏 人收藏

    评论

    相关推荐

    3D形貌微结构测量用什么设备好?推荐3D轮廓测量及分析

    仪专注测量微小结构件的微观3D形貌。利用高精度2D位移传感器对被测物进行扫描,得到被测物表面轮廓相关数据后,对其进行各种矫正和分析,得出需要的高度、锥度、粗糙度、平面度等物理量。如焊印
    发表于 06-15 18:14

    3D扫描的结构

    独特的优势,不过必须根据特定的应用需求对这些系统进行评估。 参考文献Geng, Jason:结构3D表面成像:教程Koninckx, Thomas P.和Gool, Luc Van:由自适应结构光实现的实时
    发表于 08-30 14:51

    3D图片摄像机的视野范围怎么扩大?

    在虚拟仪器3D图片中绘制了一条比较长的曲线,提升相机后出现部分线段消失,现在视野范围是120个单位,视野范围太小了,怎么扩大,看到更广的视野?在其他3D平台上的视野
    发表于 05-29 12:32

    3D打印机的结构

    这是 DIY 系列的第一篇,先从结构说起。细数 3D 打印机的结构不下 10 种了,各有各的优缺点。从最古老的龙门结构开始,分别列举各自的优缺点。(以下内容来源于互联网,如有侵权请联系
    发表于 09-01 06:37

    使用结构光的3D扫描介绍

    控制、医疗、牙科和原型设计。 3D扫描是提取一个物体的表面和物理测量,并用数字的方式将其表示出来。这些数据被采集为一个由X,Y和Z坐标(表示物体外部表面)组成的点云。对于一个3D扫描的分析可以确定被扫描
    发表于 11-16 07:48

    3D电视与3D电影的差别与未来

    3D电视和我们很熟悉的3D电影有什么差别呢,它的未来会怎样,大范围普及还有多远?
    发表于 07-17 16:17 3892次阅读

    3d结构光的手机OPPOFindX体验 OPPO FaceKey 3D结构光在安卓机的首次量产

    3d结构光的手机OPPO Find X体验太给力,OPPO Find X采用了高端旗舰产品上才能见到的3D结构光技术,也通过一己之力也实现了OPPO FaceKey
    的头像 发表于 07-24 09:05 7309次阅读

    丘钛科技:3D结构光已实现量产,3D TOF模组具备量产能力

    017年,苹果发布iPhone X,基于3D结构光技术推出"Face ID"的生物识别技术,支持人脸解锁和人脸支付等新功能,带火了一波3D结构光的热潮。在国内市场上,OPPO在今年6月
    的头像 发表于 08-23 17:42 1.4w次阅读

    MEMS微振镜在3D视觉中的应用

    基于MEMS微振镜的3D成像精度可达到亚毫米级精度,最优实现0.2毫米。同时基于MEMS微振镜可实现无焦的结构光投射,实现大景深探测。
    的头像 发表于 10-04 14:16 2.1w次阅读

    浅析3D结构光技术

    HUAWEI Mate 20 Pro采用2400万前置摄像头,拥有3D结构光设计,3D智能美颜,自拍清晰自然;同时支持3D人脸解锁,带来毫秒级解锁体验。
    的头像 发表于 10-23 15:55 2.1w次阅读

    MEMS光学器件— MEMS OXC(光交叉互连开关)

    ROADM结构 基于1N端口光开关构建的OXC OXC可以通过1N端口的光开关来构建,如图2所示,为了构建一个NN端口的OXC模块,需要2N个1N端口的光开关,随着端口数N的增加,
    的头像 发表于 05-09 09:18 4771次阅读
    <b class='flag-5'>MEMS</b>光学器件— <b class='flag-5'>MEMS</b> <b class='flag-5'>OXC</b>(光交叉互连开关)

    MEMS 3D打印技术经常面临各种挑战

    “尽管3D打印为MEMS技术的施展提供了更大的自由,但只有平均不到1%的3D打印相关研究集中在MEMS技术上。”研究人员表示,“这与MEMS
    的头像 发表于 07-08 09:53 3622次阅读
    <b class='flag-5'>MEMS</b> <b class='flag-5'>3D</b>打印技术经常面临各种挑战

    采用DLP 3D结构光软件开发套件的3D打印机

    德赢Vwin官网 网站提供《采用DLP 3D结构光软件开发套件的3D打印机.zip》资料免费下载
    发表于 09-07 11:24 5次下载
    采用DLP <b class='flag-5'>3D</b><b class='flag-5'>结构</b>光软件开发套件的<b class='flag-5'>3D</b>打印机

    3D视觉主要技术路径 3D结构光技术原理

    3D传感器作为3D视觉的眼睛,通过多个摄像头与深度传感器的组合能够获得物体三维位置及尺寸等数据,实现三维信息采集。目前3D视觉传感器主要有双目相机、结构光相机及TOF(Time of
    发表于 11-22 21:21 3735次阅读

    为什么说MEMS-OXC在智算场景没有未来?

    配线架MEMS-OXC,撑不起超万卡智算中心网络
    的头像 发表于 11-16 15:21 297次阅读
    为什么说<b class='flag-5'>MEMS-OXC</b>在智算场景没有未来?