目前,台积电的2nm工艺已经提上日程。
而那边,台积电已经宣布了2nm工艺取得了重大突破,预计在2024年投入量产。
在失去华为这个重要客户之后,台积电并没有像预想那样受到影响,反倒依靠手里5nm工艺这张王牌,在市场上遥遥领先于竞争对手三星。
而在未来的芯片制程上,台积电的研发进度也比预期来得快很多。
10nm、7nm、5nm、3nm、2nm……在摩尔定律进展放缓的同时,台积电突破半导体工艺进步的脚步却从未放慢。
5nm芯片、一颗要2900元
本月苹果秋季发布会,没了万众期待的iPhone 12系列,性能强大的A14处理器便成了主角。使用5nm制程工艺的A14到底有多强大——封装118亿个晶体管;性能比上一代提升40%;16核神经网络引擎,每秒可执行11万亿次操作。
但在强大性能的背后,受制于5nm工艺的高成本和较低的成品率,5nm芯片的产能十分有限。媒体报道表示,今年台积电最多只能代工7400万颗A14处理器,这还是在动用全部5nm产能下能够完成的数量。
在美国对华为制裁禁令的生效之后,台积电已无法再为华为代工麒麟芯片,此前华为给台积电的订单是1500万颗麒麟5nm芯片,但因为生产时间十分有限,最终也只在9月15日之前生产了880万颗处理器,占据全部订单的60%左右。在这之后,台积电也将全部产能投入到A14处理器的生产中。
目前,台积电每月仅能生产5万片晶圆,这个产能远远不能满足苹果需求。
5nm芯片的成本到底有多高?
昂贵的设备和工艺成本,推动了芯片价格的上涨,这是无法避免的。正如2018年的时候,台积电官方表示,预计在5nm工艺上总共投资了250亿美元,其中5nm芯片设计成本将增至4.76亿美元。也就是说,像设计一款A14或者麒麟5nm芯片,总成本可能高达近5亿美元。
在美国研究机构CSET的两位作者编写的一份题为《AI Chips: What They Are and Why They Matter》的报告中,他们借助模型预估得出,台积电5nm制造的12吋晶圆成本约为16988美元,远高于7nm约为9346美元的成本。
如果换算成单颗5nm芯片的制造成本,同样也十分昂贵。每片300mm直径的晶圆只可以制造71.4颗5nm芯片,平摊单颗芯片成本将高达238美元(约合1600元人民币)。
报告以英伟达P100 GPU为例,这款产品采用台积电的16nm节点处制造,包含了153亿个晶体管,裸片面积为610平方毫米。
事实上这还只是晶圆制造成本,而一颗芯片的诞生还需要包含设计成本和封装、测试成本,这部分的成本也是非常高的,每颗芯片的设计和封装、测试成本,分别为108美元和80美元。
如果这份研究报告的准确性高的话,那么意味着一颗5nm芯片支付的总成本将可能达到426美元(约为2929元)。
当然,这么估算也只是最理想的状态,考虑到5nm工艺才开始正式量产,所以可能会有比较高的损耗,同时光刻机的成本也极高,因为要重度依赖极紫外光EUV技术,而一台EUV光刻机的价格高达1.2亿美元。
实际上麒麟9000的成本可以并不需要这么多。此前有人透露,12吋晶圆大概能够切割出400颗麒麟9000芯片。若按此计算,单颗制造成本为42美元,约合287元人民币,加上设计和封装、测试成本,一颗芯片的最终成本可能在230美元左右,也就是1570元人民币。
但不可否认,今年苹果和华为的旗舰机注定不会再便宜。
未来,瞄准更先进制程
市场研究机构International Business Strategies (IBS)给出的数据显示,28nm之后芯片的成本迅速上升。28nm工艺的成本为0.629亿美元,到了7nm和5nm,芯片的正本迅速暴增,5nm将增至4.76亿美元。三星称其3nm GAA 的成本可能会超过5亿美元。
并且,随着半导体复杂性的增加,对高端人才的需求也不断增长,这也进一步推高了先进制程芯片的成本。报告中指出,研究人员的有效数,即用半导体研发支出除以高技能研究人员的工资,从1971年到2015年增长了18倍。
换句话说,摩尔定律延续增加大量的投入和人才。
为了支撑先进制程,台积电十年内研发人数增加了三倍,2017年研发人员将近6200人,比2008年多了近两倍,这6200人只从事研发,不从事生产。
从台积电的消息还显示,接下来其将继续完善推进相应技术。
目前,台积电披露了旗下的又一大新研发进展,即3nm工艺。这一工艺台积电去年就开始着手,目前进展顺利。
与5nm相比,3nm可以在相同的功率水平下提高10-15%的性能,或者在相同的晶体管速度下降低25-30%的功率。其计划在2021年进入风险生产,2022年下半年进入量产。
台积电在2nm半导体制造节点方面取得重大研究突破,有望在2023年中期进入2nm工艺试生产阶段,并在一年后开始批量生产。目前,台积电的最新制造工艺是5nm工艺,已用于生产A14仿生芯片。
据悉,台积电的2nm工艺将采用差分晶体管设计,采用环绕闸极(GAA)制程为基础的MBCFET架构,解决FinFET因制程微缩产生电流控制漏电的物理极限问题。而在极紫外光微显影技术方面的进步让台积电的 纳米片(Nano Sheet)堆叠关键技术更为成熟,良品率的提升比预期的顺利许多。
该设计被称为多桥沟道场效应(MBCFET)晶体管,它是对先前FinFET设计的补充。值得注意的是,这也是台积电第一次将MBCFET设计用于其晶体管。
台积电一位高管对外表示,“我们乐观预计2023年下半年风险试产收益率将达到90%,这将有助于我们未来继续赢得苹果、汇达等主要厂商的大订单”。同时,他还提到,量产将于2024年开始。
台积电去年成立了2nm项目研发团队,寻找可行的发展路径。考虑到成本、设备兼容性、技术成熟度和性能等条件,2nm采用了基于环绕门(GAA)工艺的MBCFET。
该结构解决了FinFET工艺收缩引起的电流控制泄漏的物理限制。
这方面最早的仍然是三星,三星已经准备在 3nm 工艺的时候引入 GAA 技术。基于全新的GAA晶体管结构,三星通过使用纳米片设备制造出了MBCFET(Multi-Bridge-Channel FET,多桥-通道场效应管),3nm 工艺可将核心面积减少 45%,功耗降低 50%,性能提升 35%。
至于台积电,最新消息显示,台积电很有可能在 2nm 的时候在引入 GAA 技术。根据 Digitimes 报道,台积电 2nm GAA 工艺研发进度提前,目前已经结束了路径探索阶段。
责编AJX
-
台积电
+关注
关注
44文章
5632浏览量
166404 -
摩尔定律
+关注
关注
4文章
634浏览量
78995 -
晶圆
+关注
关注
52文章
4890浏览量
127930
发布评论请先 登录
相关推荐
评论