1 李开复:AI最大的机会蕴藏在与传统企业的结合中-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

李开复:AI最大的机会蕴藏在与传统企业的结合中

vVYl_kaifu 来源:李开复 作者:李开复 2020-10-13 15:49 次阅读

近日,我与阿莱克斯·彭特兰教授(Alex Pentland)展开了一场”AI如何重塑人类社会”的精彩对话。

《连线》杂志的资深撰稿人威尔·奈特(Will Knight)主持了这场对话。

阿莱克斯·彭特兰教授任教于麻省理工学院,为全球大数据权威专家之一,现任MIT连接科学研究所主任、MIT媒体艺术与科学教授,拥有“可穿戴设备之父”、《福布斯》“全球七大权威大数据专家”、《麻省理工科技评论》“年度十大突破性科技”两度桂冠获得者等头衔,曾参与创建MIT媒体实验室,是全球被引述次数最多的计算科学家之一。

对话金句:

李开复:

AI最大的机会蕴藏在与传统企业的结合中,这种价值的产生极其迅速,只需要几个月,甚至短短几周。

未来突破很难预测,对奇点、超级智能的争辩,在我看来都过于乐观了。

小型AI公司与巨头竞争,我的建议是找准巨头没有平台优势的细分领域,为某个针对性产业创造价值,不要与巨头核心业务正面硬碰。

阿莱克斯·彭特兰:

AI绝非试图取代人类,而是促进多元文化之间的相互连接、团队合作,让人们更好的进行社交和连接彼此。

最困难的其实是说服人们改变商业流程去使用AI,因为大多数人是墨守成规的。

人工智能有朝一日可以取代人类所有的能力,但是这个过程会非常漫长,可能需要上百年或更久。


李开复博士与MIT阿莱克斯·彭特兰教授对话完整视频(中文同传) 我在对话中表示,当我们试图解决AI问题时,应该用技术来解决技术的问题,可以寻求与监管部门协作,而不只是丢给他们,“新技术会衍生新的问题,我们应该多方尝试用更进阶的技术性解决方案,就像电脑病毒刚出现时,杀毒软件随之诞生。” 彭特兰教授认为,人工智能的核心,是促进多元文化之间的相互连接。不只是工程师或科学家,连经济学家、政治家都必须参与进来。“国家之间应该促进合作、制定互通标准,就像TCP/IP互联网协议那样,避免AI冷战。” 我们都赞同,AI发展从来不是单打独斗,跨学科思维、跨领域合作尤为重要。 这场对话是麻省理工学院中国创新与创业论坛(MIT-CHIEF) 组织的高峰对话系列活动,主题是《计算与未来: AI与数据科学如何重塑人类社会》。

麻省理工学院中国创新与创业论坛(MIT-CHIEF)由麻省理工学院的中国留学生创立,至今已有十年,是北美历史最悠久的、由高校学生组织的中国创新创业论坛。系列高峰对话邀请了顶级科学家、投资人及创业者,共同探讨科技创新及商业化过程中面临的挑战。

2017年我在波士顿MIT校园参与MIT CHIEF活动留影 以下是我们对话的核心内容,由我的同事整理、分享给大家:

PartI 主题演讲

李开复:各方应协作,让AI 更务实 非常荣幸再次受到MIT-CHIEF的邀请,对于人工智能的看法,这次我主要想讲四点。 第一点是我书里的主题,人工智能的超能力。我们已经从人工智能的发明期步入应用期阶段,从应用落地层面来说,正迎来了AI发展最大的机遇。 很多科技公司目前已对人工智能进行了多样化布局,从视觉、语言、触觉和其他感知技术,到自动化机器人无人驾驶等,对很多领域开启了深远的影响。虽然眼下所见的AI应用仍有局限性,但我预测未来的格局会非常庞大,依据统计,各行各业采用AI的程度目前不到5%,AI应用的中长期增长曲线相当可期。

第二点是我很欣喜看到的一点,AI正在和传统行业深度融合。随着人们对人工智能的了解越来越多,更多的AI公司涌现出来。 AI最大的机会蕴藏在与传统企业的结合中,创新工场也正在帮助金融、制造、物流、零售、医疗等行业的公司进行AI变革。 作为AI投资人,我认为在这些行业如果找到正确的AI应用方向,就能带来上千万的回报。这种商业价值的产生是极其迅速的,通常只需要几个月,甚至短短几周就能看到成果。 现在人工智能在传统产业的渗透率仍在个位数,仍然有很大的提升空间。然而对于很多公司来说,它们需要的是高度定制化的方案,而非通用型AI方案,所以融合的过程中,不可避免会遇到不少挑战和痛点。

第三,我早年做过很多科研工作,很高兴能看到关于系统一和系统二(System One, System Two)的讨论,我们期待人工智能技术从系统一升级为系统二,即从识别、决策、优化等能力,升级到感知、认知等进阶智能的能力。 有不同的学派都在努力让人工智能更接近人类智能,其中一个流派主张回归经典的AI理念,甚至重新构建崭新的模型结构,在深度学习技术的基础上利用人类的知识。但我更支持另一个理论——深度学习的潜力还没有完全释放。

回看人工智能过去60多年的历程,最大的突破来自于计算能力和数据量大增而产生的可扩展算法。我们看到了卷积神经网络(CNN)带来的喜人成绩,还有预训练自然语言处理模型(Pre-Trained Models for Natural Language Processing)的广泛运用。 预训练模型与人类语言学习的模式类似,不管是英语还是中文,在习得这些语言之后,再去学习编程、艺术、化学。

在无人监督的学习环境中,这种模式比我们想象得还要强大,就像阿尔法围棋(AlphaGo)一样。 最后一点我想说的是,如何让AI变得更务实。 AI有很多问题,例如隐私、数据安全、治理和监管,在此就不一一讨论了。当我们试图解决这些AI难题时,有人认为让监管部门加强管理是唯一办法,其实不然,我们是否也可以朝着研发更厉害的技术性解决方案去努力?

就像电脑病毒刚出现时,杀毒软件随之诞生;面对千年虫难题时,也迅速找到了技术应对方案。我们可以通过研发新技术,应对DeepFake深度换脸程序的挑战;或者通过联邦学习技术,在保证数据私密性的同时,满足深度学习训练需求。 作为握有技术能力的群体,我们需要与监管部门一起协作,而不只是把工作丢给他们。相信有了各方的助力,我们可以让AI的应用变得更有深度,更加务实,更高效地克服现在面临的种种问题。

阿莱克斯·彭特兰:国家间应建立互通标准,避免“AI冷战” 我对当前的深度学习技术不太乐观。 最为主要原因是,深度学习不仅需要庞大的数据源,而且要求这些数据长时间恒定不变,以保证模型训练结果的可靠性,例如人类的面容、语言,就是相对稳定不变的数据源。 但深度学习却没法应对快速变化的真实情况。亚马逊在新冠疫情蔓延速度暴增时,出现了仓库货物紧缺,不得不停止送货服务。这种经过深度学习高度优化后的系统发生崩溃,就是因为快速变化的疫情,和深度学习对恒定数据源的需求是矛盾的。 另外,我想谈谈如何通过联邦学习,促进数据的流通。


大多数公司没有足够丰富的数据,需要联合不同的数据来源。基于这种需求,出现了很多新商业模式,比如“数据经纪人”——他们不出售数据,而是把数据借出去,作特定需求的使用。 “数据经纪人”业务涌现了很多,他们促进了数据的流通,也加强了数据的隐私性。因此,像联邦学习这样的技术和商业策略结合,有效解决了数据在合规性和所有权方面的难题。 联邦学习也依赖于新的基础设施建设,为数据应用和深度学习提供基础环境,比如区块链技术。现在世界上很多国家在做相关系统的建设实验,新加坡等国家设置了一种相互竞争的区块链系统,来解决支付和物流问题。我们最近也帮助瑞士做了类似的实验,涉及不同数据的互通性和连贯性问题。

我们仍在研究如何用尽量少的数据,实现人工智能的目标。少量数据是指不断更新的短期数据,这些数据能使AI应对迅速变化的情况,并及时做出调整。 我们打算将AI与其他基础科学结合,例如阿尔法围棋(AlphaGo)就是这类结合的初步尝试。这些方法不依赖于大量恒定数据,可能会比深度学习更加强大。 除此之外,我们在探讨用AI保障联邦学习过程中不同数据方的权益,这是实现不同国家之间的互通性、支付信任度、物流运输等方面合作的关键前提。 另一方面,我们探索如何将AI技术应用于加密数据上。我们和大公司以及政府密切合作,找出解决系统入侵和保障网络安全的方法。

我同时花了很多时间研究与政府的合作。政府很多时候不知道如何通过大数据做决策,也不知道如何进行数据优化。而AI能够帮助政府实现更高的效率,比如联合国现在已经有了很多可持续发展目标的相关评估指标,世界经济论坛也可以为会员国提供不同的标准测算。 基于我们已有的多元数据库,现在可以利用AI实现全新的数据优化方式,将贫困、不平等这种之前无法量化的指标,通过可量化的指标进行评估。 同时,要真正实现这个目标,我们还需要制定统一的互通性标准。如果没有这个标准,国家之间就不会相互信任去合作,就可能出现AI冷战。 因此我们需要找到促进合作的方式,就像TCP/IP互联网协议那样。而之前我提到的,新加坡、瑞士等现在正在尝试的区块链系统,将有希望解决国家间缺乏互通标准的问题。

Part II 对话//美国在线教育发展难度更大,只在ZOOM上讲课是不够的Q1:疫情加速了行业的改变,远程医疗、线上教育开始蓬勃发展,这只是AI对人类社会产生影响的冰山一角。想请两位谈一谈,目前看好AI在哪些领域应用的未来前景?李开复:疫情的确对整个社会产生了实质性的影响,人们行为习惯发生了很多改变,更愿意接受线上学习和工作了。

这种新的行为习惯产生了大量数据流,为AI应用带来了更多可能性。比如大健康领域以及远程医疗中所产生的数据,可以训练更智能的模型。同时更多人开始在基因组学、新药研发方面结合新的AI技术进行研究,因此我相信AI在医疗健康领域的潜能是非常巨大的。 AI与教育的结合也很值得期待。一方面可以帮助老师处理重复性的日常事务,例如批改作业,让老师得以将时间精力投入到更有创造性的事情上,能更悉心地为孩子提供优质教学。另一方面可以提高学生的课堂参与度和积极性,比如设置卡通版AI虚拟老师,让课程充满趣味性。 在中国,有很多线上教育公司在疫情之前就已经发展迅速,像创新工场投资的VIPKID,让国外的纯正英语老师在线上教授中国学生。

目前,中国的线上教育已经扩展到了更多科目,包括体育、舞蹈、书法等素质教育课程。 相比之下,美国线上教育发展的难度会更大。毕竟只在ZOOM上讲课是不够的,好的线上教育必须要有好的内容。 //AI核心是增强人际互联,应注重文化多样性 阿莱克斯·彭特兰:李开复博士提到的教育案例,我不是很认同。 MIT大约20年前就在教育中使用AI,重点根本不是内容,我们甚至提倡将内容免费开放给大众。 AI绝非试图取代人类的作用,我们更强调用AI增强人与人之间的互动,让人们更好的社交和连接彼此。比如手机上人工智能技术,不是要取代你,而是让你高效地找到最适合的工作、最正确的人,让你更容易的获取信息,并进行创新。

我们可以利用数据激发更强的创新力,培养领导力。只有基于这样的宗旨,才能促进更有创造力的教育和学习,这比关注教育内容本身重要得多。 在加拿大,有家创业公司正在训练普通民众学习AI,比如水管工,教学效果非常不错。他们的教育方式不是简单的教授基本知识,而是以一种能够激发人们互动思考的方式。 我们之前在中国调研了3000多个孵化器,发现创业公司成功的要素里,第一个是文化多样性,也就是说创始团队背景的复杂性和多样性。第二个是团队成员专业的多样性,他们能否发挥自己所长,并很好地进行团队合作。 1956年,马文·明斯基 (Marvin Minsky)提出了人工智能这个词。但我们对于人工智能的理解,不应该只停留在“人工”层面,而应扩展到多元文化之间的相互连接、团队合作,我把它叫做延伸智能(Extended Intelligence)。这也是我想强调的,人工智能这个名词有一定的偶然性,但它的核心点是增强人与人之间的互联性。

AI未来突破难预测,奇点、超级智能过于乐观 Q2:未来十年AI有没有可能取得重要突破?比如GPT-3近期展现惊人的能力。两位认为未来的突破方向是什么? 李开复:过去60多年来,深度学习是唯一的重大突破。在这之后,卷积神经网络(CNN)和GPT-3等都算是重要的改善,我对于人工智能的渐进式改善保持乐观。 对科学家来说,他们更期待着技术上的突破式进展。但我觉得未来十年基础科研或许不会有大的突破。

但模型相对容易,只要有大量的数据,就可以从实验室进入到行业应用,CNN和GPT-3都是模型加海量数据的成果。 我是务实派的,虽然持有乐观态度,但并不是一位“未来学家”。未来的突破很难预测,对奇点(Singularity)的争辩,甚至预测超级智能的出现,在我看来都过于乐观了。 阿莱克斯·彭特兰:我同意李博士的观点。很多生物机制很难解释,包括用感知认识事物、理解声音、寻找食物等,是深度学习算法做不到的。但深度学习可以研究科学、制定规则、研究理论,并进行实践。 从务实的角度来说,我最感兴趣的就是联邦学习。就医疗而言,我们有这么多医院,在新冠疫情期间做了很多的实验,为什么这些实验数据不能进行联合呢?

尽管数据有不兼容的地方,但这也是一个很好的机会去探究不同的数据之间的关联性。在未来,我们对数据的需求也许会越来越少,外科医生或者物理学家或许不需要太多数据,因为他们对规则已经了如指掌了。 //不要墨守成规,要跨领域、跨学科应对挑战Q3:人工智能会有什关键挑战?对于想从事这个行业的人,有什么是需要了解的关键点? 李开复:首先,大背景在改变,新科技层出不穷,我们每年都需要学习新的东西。 其次,人工智能可能引起各种问题,包括偏见、歧视、伦理道德等,是否危害人类的身体健康,无人驾驶技术该何去何从等等。 第三,人工智能的研发需要深刻地理解技术对社会、生活与人类健康会产生的影响。

我非常欣赏斯坦福和MIT这样的高校,能够把AI教育扩展到各个学科,让研发人员及早意识到自己的责任和价值。 阿莱克斯·彭特兰:是的,我朋友做过一个有关电的趣味类比,电动马达最初在工厂里用于生产的时候,并没有发挥出多大的作用,因为大家并不知道如何改造生产流程。 AI在一些领域发挥的作用是显著的,但应用到其他领域时,就需要改造流程。很多情况下,最困难的就是说服人们改变商业流程去使用AI,因为大多数人是墨守成规的。

而有意思的是,就像李博士提到的,像MIT和斯坦福这样的高校确实在认真严肃地对待这个问题。 比如,我今天早上正好就这个话题跟G20领导人对话,大家一致认为我们必须从跨领域、跨学科的角度去面对这个问题,不能只是工程师或者社会科学从业者们在做,经济学家,政治家等等都必须参与进来紧密合作。 随着AI的应用领域越来越广,除了必须具备强有力的技巧来建立社会规则,还需要对研究经费、企业投入等进行各种调整。

虽然大公司实力不容小觑,但依旧对小公司抱有期待Q4:AI研究会消耗大量的资源,我们是否应该将资源往学术界平衡?现在已经发生资源的重新分配和平衡了吗? 李开复:就人才而言,现在已经有重新平衡的迹象了。 过去,顶尖大学的学者基于待遇和种种考量,不少选择去企业界工作。而近期,曾任职于百度、海尔、字节跳动等公司的数位优秀AI科学家已经回归高校。 但像GPT-3这样的技术,仍然不是大学和小公司能支付得起的。支撑GPT-3运行的电脑是世界算力第五的超级计算机。每进行一次算法训练,就要花费460万美金,只有像腾讯、谷歌、微软这个级别的公司才能负担得起如此强大的算力。

我观察到,近年的AI创业公司已经和5年前截然不同了。它们一般由AI科学家和商业人才共同创建,为了解决特定问题而生,并非纸上谈兵做突破性科研,切入的领域也往往是巨头公司忽略的地方。 例如,为制造业进行AI赋能,不是一件轻松的事,需要去工厂实地勘查,了解运作方式。大公司因为赚钱很容易,不愿意做这些性价比低的苦活累活。这些小公司的努力一旦有了成果,就会给产业界带来革命性的影响。

所以,虽然大公司的实力不容小觑,但我依旧对小公司抱有期待。 阿莱克斯·彭特兰:大学和公司是一种融合的关系,不仅体现在人才流动上,也会进行信息资源共享,彼此是整体性的合作态势。 当然这也不是绝对,产业界的保密需求还是存在的,只是从学校的出发点来说,我们愿意毫无保留地为大家提供更好的研究成果,并与企业合作,形成标准化平台。

人工智能取代人类需要上百年或更久Q5:两位认为什么是AI不能取代的? 李开复:一类是创造力、分析能力、逻辑辩论能力,了解自己知道什么不知道什么,这些是人工智能无法取代的。 另外一类是同理心,人类之间的信任、友谊,自我认知、意识等。 阿莱克斯·彭特兰:人工智能有朝一日可以取代人类所有的能力,但是这个过程会非常漫长,可能需要上百年或更久。


AI创业建议I:找到小切入点,不要与巨头正面硬碰Q6:李博士提到了AI在小企业中的运用,可否再举例说明是如何运用的? 李开复:这个问题分两部分:一个是小型AI公司与巨头竞争,我的建议是找准巨头没有平台优势的细分领域,为某个针对性产业创造价值,并且不要与巨头核心业务正面硬碰。 对于那些中小型非AI、但想应用AI的公司,需要确保有足够的数据,以训练与核心商业价值挂钩的AI模型,并且有愿意变革的开放性公司文化。 所以,早期应用AI的公司可能规模较大,因为他们有足够大的数据,和可兼容变革的商业模型。每个例子都不同,不是任何一家公司都要应用AI。

阿莱克斯·彭特兰:如果我们放宽AI的定义,或许水管工、合同工都有数据,通过一些简单的分析、整合,AI也可以在很大程度上改进他们的工作。 这些都是很小的切入点,基于简单的AI分析、机器学习,依旧可以产生巨大的潜力。 //AI创业建议II:知晓技术,同时理解商业Q7:两位再分享一下最后的建议? 李开复:我们在步入一个AI开始渗透到方方面面的令人振奋的时代,我希望所有的学生们都能参与到这个改革浪潮中。要深刻地理解人工智能的商业落地,而不仅仅钻研技术本身。 阿莱克斯·彭特兰:不要太较真于深度学习或者冗长的算法,一切始于要解决的现实问题。不要止步于技术本身,要明白数据类型、形态和规律,关注商业流程。

原文标题:李开复对话MIT彭特兰:AI不是单打独斗,应避免AI冷战

文章出处:【微信公众号:李开复】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30728

    浏览量

    268885
  • 人工智能
    +关注

    关注

    1791

    文章

    47183

    浏览量

    238243
  • 李开复
    +关注

    关注

    1

    文章

    42

    浏览量

    6260

原文标题:李开复对话MIT彭特兰:AI不是单打独斗,应避免AI冷战

文章出处:【微信号:kaifu,微信公众号:李开复】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    周亚辉的朋友圈,揭开潜藏在AI冰山下的秘密

    2024年的满分AI公司,和它们潜藏在冰山下的秘密
    的头像 发表于 11-29 09:22 2122次阅读
    周亚辉的朋友圈,揭开潜<b class='flag-5'>藏在</b><b class='flag-5'>AI</b>冰山下的秘密

    企业AI算力租赁是什么

    企业AI算力租赁是指企业通过互联网向专业的算力提供商租用所需的计算资源,以满足其AI应用的需求。以下是对企业
    的头像 发表于 11-14 09:30 484次阅读

    企业AI开发环境怎么样

    随着AI技术的不断成熟和应用场景的日益丰富,企业对于构建高效、稳定、可扩展的AI开发环境的需求愈发迫切。下面,AI部落小编将从多个维度,探讨当前企业
    的头像 发表于 11-11 09:57 155次阅读

    企业AI模型部署怎么做

    AI模型部署作为这一转型过程的关键环节,其成功实施对于企业的长远发展至关重要。在此,AI部落小编为您介绍企业
    的头像 发表于 11-04 10:15 149次阅读

    李开复:中国擅长打造经济实惠的AI推理引擎

    10月22日上午,零一万物公司的创始人兼首席执行官李开复在与外媒的交流透露,其公司旗下的Yi-Lightning(闪电模型)在推理成本上已实现了显著优势,比OpenAI的GPT-4o模型低了31倍。他强调,中国擅长打造经济实惠的AI
    的头像 发表于 10-22 16:54 352次阅读

    AI云平台与传统云计算的区别

    AI云平台与传统云计算在定义、技术架构、应用场景和服务模式等方面存在显著差异。
    的头像 发表于 10-14 10:08 341次阅读

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    计算的结合 我深刻体会到高性能计算(HPC)在AI for Science的重要性。传统的科学计算往往面临计算量大、计算时间长等问题,而AI
    发表于 10-14 09:16

    ai大模型和传统ai的区别在哪?

    的BERT模型使用了33亿个参数,而传统AI模型通常只有几千到几百万个参数。 模型复杂度 AI大模型通常具有更高的模型复杂度,这意味着它们可以更好地捕捉数据的复杂模式。相比之下,
    的头像 发表于 07-16 10:06 1321次阅读

    AI大模型与传统AI的区别

    AI大模型(如LLM,即大型语言模型)与传统AI在多个方面存在显著的区别。以下将从技术层面、应用场景、性能表现、计算资源和成本、以及发展趋势和挑战等角度进行详细阐述。
    的头像 发表于 07-15 11:37 2626次阅读

    生成式AI传统AI的主要区别

    随着人工智能技术的飞速发展,生成式AI(Generative AI)逐渐崭露头角,并与传统AI(也称为“规则驱动的AI”或“判别式
    的头像 发表于 07-05 17:35 2557次阅读

    李开复展望AI未来:2025年AI或超博士水平

    在6月29日举办的知乎第十届盐Club新知青年大会上,科技巨头李开复,身兼零一万物CEO和创新工场董事长双重身份,发表了对人工智能(AI)未来的深度见解。他回顾了自己与AI相伴的40年历程,并大胆预测,大模型技术的飞速进步将使
    的头像 发表于 06-29 15:56 883次阅读

    ADVANCE.AI 荣登甲子光年「星辰100:2024AI出海服务创新企业」榜单

    榜,这一榜单旨在评选出AI领域中的创新企业和创新实践,以彰显它们在技术研发、商业模式、应用场景创新及生态建设等方面的杰出贡献。ADVANCE.AI凭借在出海服务领域的出众表现,荣登“2024
    的头像 发表于 06-12 16:43 433次阅读
    ADVANCE.<b class='flag-5'>AI</b> 荣登甲子光年「星辰100:2024<b class='flag-5'>中</b>国<b class='flag-5'>AI</b>出海服务创新<b class='flag-5'>企业</b>」榜单

    澜舟科技与零一万物达成战略协议,李开复预测大模型将成为未来趋势

    针对大模型的应用,李开复确认“杀手级”应用已经问世,且此类应用实现1亿用户覆盖所需时间缩短至2-6个月间。他预测3年后,生成式AI的应用将以惊人速度增长,改变移动应用的整体格局。
    的头像 发表于 03-18 15:44 446次阅读

    数据赋能:构建数据治理与AI的协同闭环

    在数字化浪潮,数据已成为企业的新型燃料,而AI则是提炼这种燃料的精炼厂。数据治理与AI的协同作用,正在引领企业迈向更智能、更高效的未来。本
    的头像 发表于 03-15 10:47 482次阅读