1 机器学习在预测分子、化学过程等方面助力计算化学发展-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习在预测分子、化学过程等方面助力计算化学发展

工程师邓生 来源:OFweek维科网 作者:千家网 2020-10-28 15:00 次阅读

在过去的几年中,化学研究只专注于使用从个人经验和文献中获得的先前研究成果的进行试验的方法。尽管在文献中一直有很多反应和化学途径可供科学家使用,但在一系列反应/一系列反应中可能会发生许多不可预测的自发场景。这是化学研发需要时间和耐心才能产生结果的原因之一。

在过去的十年左右的时间里,计算化学领域一直在增长。尽管早在那之前,计算方法的使用还是很有限的,但是近年来,它已经成为优化和预测化学研究的非常强大的工具。现在,使用计算方法,化学家可以预测反应的工作方式,最佳参数、要使用的试剂和反应条件,甚至可以使用计算方法来预测他们计划制造的材料/分子的结构和性质。

因此,计算方法可以在整个概念、开发和分析过程中为化学家提供帮助。那么,为什么近年来使用量增加了?首先,化学家对计算化学有了更多的了解,并意识到它可以带来的好处。第二,更多科学家现在更容易获得支持这些vwin 所需的计算能力。第三,机器学习算法的进步以及它们在计算化学过程中的集成,使得可以获得更准确的结果-实验进行时,成功的可能性更高。

将机器学习应用于化学过程

像许多实施机器学习的领域一样,它在计算化学领域的用途是从文献中获取所有已知数据,进行推断和分析,并预测最可能的结果。对于化学领域,这通常意味着从不同的反应中获取数据,例如试剂的类型、化学物质的浓度、工艺条件以及可以生产的产品

所有这些数据都是有价值的,因为它们都是可以决定结果的因素,使反应物成为理想的输入集,而产物则成为输出。这些数据的使用可以被输入到机器学习算法中,并且可以用来做三件事。首先是通过使用现有数据,可以推断出化学结构形成的最可能原因(从反应/过程的角度来看),并且可以被工业界用来预测执行其所需功能的新分子。

第二种方法更多地与流程本身有关。有时,研究人员会想到一个产品,但不知道其过程。可以从以前的反应中获取数据并进行分析,这使算法能够预测哪些条件和试剂将负责分子中不同化学基团的形成。这使算法可以创建反应路径,该算法显示了逐步构建分子的最可能途径。

第三种方法是完整的分子设计方法,该方法以一个想法开始,但没有定义的产物或反应途径。这采用了其他两点的原则。尽管如此,除了一个变量(产物或反应)外,两者在技术上都是未知的,因此算法需要外推产物和反应条件,以产生可能的结果/途径。这是一项较难执行的任务,但受到了很多关注。

机器学习预测分子

计算化学的另一个主要方面是对材料/分子本身,它们的基本内在特性以及它们在某些情况/环境下的行为进行预测。与工业中通常采用的工艺优化相比,这是计算化学的更基本、更长时间的使用,并且在学术界研究新材料和分子时通常更常用(因为这是时间、金钱和有效产品规模的体现)。应当指出的是,这些努力不仅限于化学领域,因为在生物和工程领域也使用了类似的计算方法。

即使需要关注的因素较少(即仅关注分子,而不是过程和分子),但在此领域中使用计算化学也很重要,因为它有助于从根本上实现结果。通常是在创建工业流程之前发生的阶段-机器学习也确实帮助提升了这一领域。

模拟分子的结构及其如何执行并非易事。多年来,一直受到需要计算的变量数量与可用计算能力的限制(许多研究人员共享一台超级计算机来执行上述计算)。机器学习在这方面确实有所帮助,因为与以前相比,计算原子的各种数量、键能、能量和反应势垒、量子特性、磁和激发分子态以及分子间和分子内相互作用都非常容易。

从一组变量和已知数据点推断和预测最佳解决方案是机器学习最擅长的事情,这意味着使用机器学习算法可以更轻松地优化必须计算的大量数据。上述许多变量对分子/分子系统的结构和性质都有重要影响,因此推论出比往年更准确的分子和性质。它甚至可以使更复杂的原子(例如元素周期表中的d和f块元素)的计算精度更高,而在过去的几年中这是不可能的。

总结

即使有几种不同的计算程序可用于创建这些分子模拟,但是机器学习也可以应用于所有这些模拟中。机器学习不仅有助于优化和改善工业水平上的化学和药物发现过程,而且在推论已知和未知分子的分子结构和特性,了解分子在某些情况下的行为以及反应最有可能产生的结果等基础性方面也发挥了关键作用。

总体而言,机器学习已经对计算化学产生了巨大影响,并且随着越来越多的化学家在尝试实验程序之前首先转向计算/模拟,机器学习将在未来几年中发挥更大的作用。
责任编辑:PSY

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47183

    浏览量

    238213
  • 机器学习
    +关注

    关注

    66

    文章

    8406

    浏览量

    132557
  • 大数据
    +关注

    关注

    64

    文章

    8882

    浏览量

    137392
收藏 人收藏

    评论

    相关推荐

    原子的结构化学反应中的作用

    化学反应是物质世界中最基本的现象之一,它们构成了我们周围环境和生命过程的基础。化学反应中,原子是不可分割的基本单位,它们通过化学键的断裂和
    的头像 发表于 12-17 15:23 158次阅读

    如何在化学和材料科学领域开展有影响力的人工智能研究?(二)

    第二部分编译后的内容:3.问题遇见方法:从机器学习的视角去解决化学问题的方法机器学习的具体内
    的头像 发表于 12-03 01:02 211次阅读
    如何在<b class='flag-5'>化学</b>和材料科学领域开展有影响力的人工智能研究?(二)

    如何使用 PyTorch 进行强化学习

    计算图和自动微分功能,非常适合实现复杂的强化学习算法。 1. 环境(Environment) 化学习中,环境是一个抽象的概念,它定义了智能体(agent)可以执行的动作(acti
    的头像 发表于 11-05 17:34 278次阅读

    LG化学欧洲创新中心正式启动

    ,专注于新一代电池材料、生物材料以及塑料再利用等环保技术的研发。这些领域的研究不仅符合全球可持续发展的趋势,也体现了LG化学推动绿色转型方面的积极贡献。 此外,LG
    的头像 发表于 10-29 11:17 271次阅读

    【《时间序列与机器学习》阅读体验】+ 了解时间序列

    速度。 可以探索现象发展变化的规律,对某些社会经济现象进行预测。 利用时间序列可以不同地区或国家之间进行对比分析,这也是统计分析的重要方法之一。 而《时间序列与机器
    发表于 08-11 17:55

    化学测试方法详解

    伴随当今世界发展,不仅电化学理论和电化学方法不断创新,而且应用领域也占有越来越重要的地位。新能源汽车工业以及生物电化学这些领域所取得的突出
    的头像 发表于 07-03 10:13 1406次阅读
    电<b class='flag-5'>化学</b>测试方法详解

    通过强化学习策略进行特征选择

    来源:DeepHubIMBA特征选择是构建机器学习模型过程中的决定性步骤。为模型和我们想要完成的任务选择好的特征,可以提高性能。如果我们处理的是高维数据集,那么选择特征就显得尤为重要。它使模型能够
    的头像 发表于 06-05 08:27 345次阅读
    通过强<b class='flag-5'>化学习</b>策略进行特征选择

    原电池和化学电池的区别是什么

    原电池和化学电池这两个术语非正式场合经常被交替使用,但实际上它们某些方面存在细微的差别。
    的头像 发表于 05-21 16:11 1425次阅读

    化学储能与电池储能的区别

    能源领域,储能技术一直是研究的热点和关键。电化学储能和电池储能作为两种重要的储能方式,能源储存和转换中发挥着重要作用。然而,尽管它们之间存在紧密的联系,但两者原理、应用以及技术特
    的头像 发表于 05-20 16:22 1088次阅读

    关于电化学储能的BMS可行性方案

    化学储能系统一直保持着较为迅速的发展趋势,据中关村储能产业技术联盟(CNESA)统计,2021年国内电化学储能新增装机高达1.9GW,同比增长58.3%。而电化学储能在全部储能市场的
    发表于 05-16 17:08

    化学生物传感器在生物检测领域的显著优势

    化学生物传感器在生物检测领域具有显著的优势,这些优势不仅体现在其高灵敏度、快速响应等方面,更在于其医学诊断、环境监测、食品安全等多个领域中的广泛应用。下面将详细阐述电化学生物传感器
    的头像 发表于 04-29 10:00 638次阅读
    电<b class='flag-5'>化学</b>生物传感器在生物检测领域的显著优势

    热储能是化学储能吗

    热储能和化学储能是两种不同的储能方式,它们储能原理、技术特点、应用场景以及面临的挑战和发展前景等方面存在显著差异。
    的头像 发表于 04-26 16:24 1340次阅读

    化学储能和化学储能一样吗

    化学储能和化学储能是两种不同的储能方式,它们能量存储的原理、应用场景、技术特点等方面存在显著差异。
    的头像 发表于 04-26 15:18 1568次阅读

    GPU:量化理论计算的新引擎

    在过去的几十年里,量化理论计算一直是化学研究的关键工具。密度泛函理论(DFT)、分子力学(MM)、耦合簇(CC)等方法预测
    的头像 发表于 04-16 08:27 466次阅读
    GPU:量化理论<b class='flag-5'>计算</b>的新引擎

    中国化学会与华为签合作协议

    中国化学会与华为签合作协议 日前,中国化学会与华为签署战略合作协议,将在化学后备人才挖掘与培养、人才评价模式探索等方面开展合作。
    的头像 发表于 04-03 11:52 794次阅读