1 语音模块音频输出噪音不良原因及失效机理分析-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

语音模块音频输出噪音不良原因及失效机理分析

电子设计 来源:与非网 作者:与非网 2021-03-04 15:01 次阅读

实际使用中反馈麦克风或音箱出现不同程度的沙沙声,对语音模块电路分析音频输出信号出现噪音导致。经过对语音模块电路分析、系统软件分析及vwin 验证分析,确认为语音模块存在设计缺陷,时钟频率在高频状态下电压margin 存在不足,导致音频信号错乱而出现喇叭“沙沙声”。通过对语音模块软件设计降低时钟频率及检测方法的完善,提升语音模块整体使用的可靠性。

引言

人机交互模式操控平台各种各样,其作用主要实现人与机器的交流,靠设备的输入输出和软件的流程控制来完成人机交互功能。家用电器中空调实现人机交互的设备主要为遥控器、手操器、触控屏等装置,随着计算机技术的不断发展,人们的需求在不断的增加,需要操控的功能也越来越强,如播放流行歌曲、当前的天气状态、讲个笑话、现在的日期等,同步需要的操作指令也在增多,传统的操作模式已经满足不了现代发展的需求,语音交互模式脱颖而出,它可以识别人的语言实现对空调各项功能的操作,并对操作的结果进行设备输出反馈,高度集成、及结合人机交互功能特性的语音模块成为空调产品的优选。由于其本身硬件、软件的复杂性,其存在异常时将影响输入、输出信号的正常反馈,将影响用户对空调的使用体验,因此语音交互平台可靠性的问题急需研究解决。

1 语音模块音频输出噪音不良原因及失效机理分析

在空调生产过程中,引入使用A厂家语音模块在实际生产及用户使用过程中出现多次投诉事故,反馈空调语音播报失效出现语音声控异常现象,失效语音模块通电测试故障复现,人机交互是扬声器播报有沙沙声现象,如图1语音模块PCBA。

图1 语音模块PCBA

语音模块沙沙声主要是音频信号输出异常导致,分析可能的原因有音频输出电路器件失效、焊接等失效异常或者软件异常导致输出音频信号有沙沙声。

1.1 语音模块外观、焊接检查

对故障语音模块使用放大镜观察元器件无受损及焊接异常、X-RAY扫描未发现焊接异常,核实外观检查均未发现装配问题,如图2。

图2 外观检查(左),X-RAY扫描(中、右)

1.2 上电测试电性能参数

对失效语音模块上电测试,语音交互测试时故障现象沙沙声复现,语音模块关键性能参数电压值、电流值均在正常范围内,如图3。

1)电流参数:显示整机运行时电流实际测试值为264 mA,符合要求范围170~270 mA;

2)电源电压参数:5 V 电源电压实际测试值为5.22 V,符合要求范围4.6~5.5 V;

3)MIC 电压参数:MIC 电压实际测试值为3.32 V,符合要求范围1.7~3.6 V。

图3 语音模块通电测试

1.3 关键端口参数测试

测试故障品扬声器、通讯、麦克风端口的PN值与正常品对比,测试结果一致,未发现异常,如表1。

表1 各端口参数测试PN值

1.4 抗干扰试验

针对外部电磁信号干扰试验验证,通过不加磁环及在强电场附近验证,均未发现异常(如图4)。

1)语音模块装整机不加磁环均可以正常工作,测试30 min未出现播报异常。

2)整机装配使用语音模块,在主板附件放置通电线、整机不加磁环验证语音功能正常,测试30 min未出现破音故障。

图4 语音模块装整机通电验证(左放置强电线,右整机不加磁环)

1.5 波形测试

1)扬声器波形测试

异常品扬声器波形输出异常,幅值偏大,峰-峰值为8.2 V的杂波,正常波形为幅值在3.16~3.3 V之间有序的正弦波,如图5(左图为异常品波形,右图为正常品波形):

图5 扬声器波形输出测试

2)芯片DAC波形测试

测量正常工作状态下,芯片DAC 输出波形正常,如图6。

图6 正常品芯片DAC 输出波形

喇叭出现“沙沙声”时,芯片DAC 输出波形已经出现异常,可以看到明显的噪音,与异常品扬声器波形输出一致,如图7。

图7 异常品芯片DAC 输出波形

3)芯片DAC集成在MCU主控中,分析语音模块扬声器播报有沙沙声失效因素与MCU主控芯片有关,如图8。

图8 语音模块架构

1.6 语音模块Logic电压测试

测试语音模块MCU主控芯片的Logic电压进行测试,发现PCBA中对应的VDD_LOG电压与正常品对比存在异常,出现沙沙声异常的普遍偏低。

图9 VDD_LOG所处电路图

测试VDD_LOG电压,售后故障件电压在0.946 V,合格电压在1.105 V,通过电压测试对比发现合格的VDD_LOG电压在1.1 V左右,故障品VDD_LOG电压都在1.0 V以下。

2 语音模块噪音失效模拟实验验证复现

2.1 将故障品PCBA配置Logic电压,降频试验:

1)[email protected] :Clk_I2S_FRAC_IN=1.2G,有喇叭杂音;

2)[email protected] :Clk_I2S_FRAC_IN=600M,拷机24 h,正常无杂音;

3)[email protected] :Clk_I2S_FRAC_IN=1.2G,拷机24 h,正常无杂音。

杂音原因分析:Clk_I2S_FRAC_IN=1.2G时,[email protected] V用0.95 V电压不足,通过I2S降频或VDD_LOG提升电压可以解决杂音问题。

2.2 将芯片从PCBA拆下重新植球后在SLT&SVB测试,测试结果如表2。

表2 模拟验证结果

1)SLT与SVB工程机默认配置未见异常,表明芯片是OK品;

2)将VDD_LOG降低到0.95 V可以复现杂音现象;

3)将由1.2 GHz降低到600 MHz后,杂音现象消失。

综上所述:芯片存在“正态分布”,IC 内部有“自适应”电压机制,属于AP 型主控行业内做法。对于分布在一般性能的IC,VDD_LOG 电压适配在1.05 V;对于分布在高性能(小比例)的IC,VDD_LOG 电压适配在0.95 V。VDD_LOG 在0.95 V 时也存在“正态分布”,故障样品0.95 V 的“正态分布”稍差一点。在I2S_in时钟频率1.2 GHz 状态下,电压margin 不足导致音频信号错乱而出现喇叭“沙沙声”。

1 语音模块音频输出可靠性提升方案

对语音模块失效因素及失效机理分析要因,主要为时钟频率过高、软件匹配性不足、Logic电压过程监控不足方面进行可靠性改善。具体可靠性提升方案如下:

● 当限制VDD-LOG的最低电压为1.05 V,将CLK-I2S-FRAC-IN的时钟源由1.2 GHz切换到600 MHz,关闭由VDD电压margin不足导致的喇叭沙沙声;

● 软件改善,通过软件优化增加系统对VDD-log电压匹配的冗余率;

● 增加执行VDD‐LOG“电压测试”,确认SLT 芯片端的执行情况。

2 整改效果评估及应用效果验证

● 将I2S‐in 音频时钟频率由1.2 GHz 降低为600 MHz 时故障现象消失,上电播音老化72 h,未见异常;

● 默认1.2 GHz 配置时,将VDD‐LOG 抬压后,VDD‐LOG电压不低于1.05 V,故障现象消失,上电播音老化72 h未见异常;

● 限制VDD-LOG的最低电压为1.05 V,同步CLK-I2S-FRAC-IN的时钟源由1.2 GHz切换到600 MHz。关闭由时钟源频率过高的情况下VDD电压margin不足导致的喇叭沙沙声,上电播音老化720 h未见异常。

● 对4.3调整验证的结果,增加执行VDD‐LOG“电压测试”,目前再未反馈VDD‐LOG电压低、使用语音模块播报出现噪音异常。

3 语音模块音频输出改善意义

本文结合失效现象,对语音模块音频输出噪音的失效原因及失效机理分析,分析结果表明语音模块在设计初期试验设计评估不足,在后续使用时出现运行故障,即播报出现沙沙声异常现象,经过对语音模块重新试验评估并进行调整验证,从语音模块试验设计初期进行试验评估完善,提高产品研发初期各项数据参数评估的可靠性。该整改思路通用性强,相关整改方案已经得到实际跟踪验证,可广泛运用于语音模块产品设计试验验证过程中,整改思路及可靠性提升方案行业均可借鉴。
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 音频信号
    +关注

    关注

    9

    文章

    254

    浏览量

    33479
  • 语音模块
    +关注

    关注

    1

    文章

    223

    浏览量

    17365
收藏 人收藏

    评论

    相关推荐

    LM49450单板测试时,耳机输出噪音是什么原因导致的?

    我的音频设计使用了LM49450,单板测试时,耳机输出噪音,请问可能是什么原因导致的?干扰?还是寄存器配置有什么注意事项?
    发表于 10-23 06:28

    真空回流焊炉/真空焊接炉——LED失效分析

    LED的失效模式有多种形式,本文将分析LED的几种主要失效模式的机理帮助大家了解,以便提前规避来提高LED的质量。
    的头像 发表于 10-22 10:42 326次阅读
    真空回流焊炉/真空焊接炉——LED<b class='flag-5'>失效</b><b class='flag-5'>分析</b>

    广电计量|功率场效应管过压失效机理及典型特征分析

    失效分析最常观察到的现象是EOS过电失效,分为过压失效及过流失效的两种失效模式。对于以功率器件为
    的头像 发表于 09-18 10:55 907次阅读
    广电计量|功率场效应管过压<b class='flag-5'>失效</b><b class='flag-5'>机理</b>及典型特征<b class='flag-5'>分析</b>

    TPA3116d2音频功放有噪音原因?如何解决?

    TPA3116D2功放音频输入为单端模式。功放能够正常工作,但如果把音频声音调小后能听到丝丝的噪音,把音频断开也能听到,并且此噪声很明显,最开始以为PCB有问题。但经过改板多次还是无
    发表于 09-04 07:58

    色环电感噪音大的原因

    德赢Vwin官网 网站提供《色环电感噪音大的原因.docx》资料免费下载
    发表于 07-30 10:53 0次下载

    24芯M16插座连接器失效原因

    德索工程师说道24芯M16插座连接器失效原因可能涉及多个方面,下面将从多个角度进行分析,并尽可能参考相关文章中的数字和信息。   不良接触:这是导致M16插座连接器
    的头像 发表于 06-19 17:04 305次阅读
    24芯M16插座连接器<b class='flag-5'>失效</b>的<b class='flag-5'>原因</b>

    变频器产生噪音原因及处理方法

    噪音原因并采取有效的处理方法,对于确保设备安全、提高工作效率具有重要意义。本文将对变频器产生噪音原因进行深入分析,并提出相应的处理方法。
    的头像 发表于 06-11 17:50 3779次阅读

    晶闸管的失效模式与机理

    晶闸管(Silicon Controlled Rectifier, SCR)作为电力电子领域中的关键器件,其可靠性对电路的稳定运行至关重要。然而,在实际应用中,晶闸管可能因各种原因失效,导致
    的头像 发表于 05-27 15:00 1210次阅读

    USB AI话务语音噪音频方案

    USB AI话务语音噪音频方案
    的头像 发表于 04-25 18:16 592次阅读
    USB AI话务<b class='flag-5'>语音</b>降<b class='flag-5'>噪音频</b>方案

    PCBA产品出现故障的不良原因有哪些呢?

    PCBA加工中因技术、材料、工艺等原因,会出现一些不良的PCBA产品,怎样排查不良PCBA产品所出现的故障,分析不良
    的头像 发表于 03-04 11:07 1082次阅读

    电解电容的失效原因机理

    电解电容是一种常见的电子元件,用于存储电荷和能量。在电路中,电解电容起着重要的作用,但在使用过程中可能会出现失效的情况。本文将介绍电解电容的失效原因机理。 一、
    的头像 发表于 01-18 17:35 3480次阅读
    电解电容的<b class='flag-5'>失效</b><b class='flag-5'>原因</b>和<b class='flag-5'>机理</b>

    mlcc失效原因分析

    失效原因进行分析。 1.温度过高:MLCC的工作环境温度对其性能有很大影响。当温度过高时,电容器内部的介质会发生热分解,导致电容值下降、漏电流增大等现象。此外,高温还可能导致电容器内部的电极材料与介质发生化学反应,生成气体,使
    的头像 发表于 01-16 10:46 2876次阅读
    mlcc<b class='flag-5'>失效</b><b class='flag-5'>原因</b><b class='flag-5'>分析</b>

    什么是锂离子电池失效?锂离子电池失效如何有效分析检测?

    什么是锂离子电池失效?锂离子电池失效如何有效分析检测? 锂离子电池失效是指电池容量的显著下降或功能完全丧失,导致电池无法提供持久且稳定的电能输出
    的头像 发表于 01-10 14:32 912次阅读

    工业级连接器接触失效原因有哪些

    CNLINKO凌科电气连接器知识分享接触失效是电连接器的主要失效模式,那么哪些原因会导致接触失效呢?又该如何防止或减缓接触失效呢?一文告诉你
    的头像 发表于 12-23 08:13 681次阅读
    工业级连接器接触<b class='flag-5'>失效</b>的<b class='flag-5'>原因</b>有哪些

    IGBT模块失效机理的两大类分析

    变压器结电容相对于电压变化率过大,导致的耦合电流干扰问题。这个问题导致的后果是,输出逻辑错误,控制电路被干扰,电路失效等。
    发表于 12-22 09:43 677次阅读