1 用于解释神经网络的方法是如何发展的?-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于解释神经网络的方法是如何发展的?

中科院长春光机所 来源:新智元 作者:新智元 2020-12-23 10:23 次阅读

过去11年中用于解释神经网络最新方法是如何发展的呢?

本文在 Inception 网络图像分类器上尝试使用引导反向传播进行解释演示。

为什么「解释」很重要?

使用机器学习(ML)算法(尤其是现代深度学习)进行图像识别的最大挑战之一,是难以理解为什么一个特定的输入图像会产生它所预测的结果。

ML模型的用户通常想了解图像的哪些部分是预测中的重要因素。这些说明或“解释”之所以有价值,有很多原因:

机器学习开发人员可以分析调试模型的解释,识别偏差,并预测模型是否可能推广到新的图像

如果提供了为何做出特定预测的解释,则机器学习模型的用户可能会更信任模型

像 GDPR 这样围绕机器学习的规则要求一些算法决策能够用人类的术语来解释

因此,至少从2009年开始,研究人员就开发了许多不同的方法来打开深度学习的“黑匣子”,从而使基础模型更容易解释。

下面,我们为过去十年中最先进的图像解释技术整合了视觉界面,并对每种技术进行了简要描述。

我们使用了许多很棒的库,但是特别依赖 Gradio 来创建你在下面的 gif 文件和 PAIR-code 的 TensorFlow 实现中看到的接口

用于所有接口的模型是Inception Net图像分类器,可以在此jupyter笔记本和Colab上找到复制此博客文章的完整代码。

在我们深入研究论文之前,让我们先从一个非常基本的算法开始。

七种不同的解释方法

Leave-one-out (LOO)

Leave-one-out (LOO)是最容易理解的方法之一。如果你想了解图像的哪个部分负责预测,这可能会是你想到的第一个算法。

其思想是首先将输入图像分割成一组较小的区域,然后,运行多个预测,每次都屏蔽一个区域。根据每个区域的「被屏蔽」对输出的影响程度,为每个区域分配一个重要性分数。这些分数是对哪个区域最负责预测的量化。

这种方法很慢,因为它依赖于运行模型的许多迭代,但是它可以生成非常准确和有用的结果。上面是杜宾狗的图片示例。

LOO是Gradio库中的默认解释技术,完全不需要访问模型的内部——这是一个很大的优点。

Vanilla Gradient Ascent [2009 and 2013]

Paper: Visualizing Higher-Layer Features of a Deep Network [2009]

Paper: Visualizing Image Classification Models and Saliency Maps [2013]

这两篇论文的相似之处在于,它们都通过使用梯度上升来探索神经网络的内部。换句话说,它们认为对输入或激活的微小更改将增加预测类别的可能性。

第一篇论文将其应用于激活,作者报告说,「有可能找到对高级特征的良好定性解释, 我们证明,也许是违反直觉的,但这种解释在单位水平上是可能的,它很容易实现,并且各种技术的结果是一致的。」

第二种方法也采用梯度上升,但是直接对输入图像的像素点进行探测,而不是激活。

作者的方法「计算特定于给定图像和类的类显着性图,这样的地图可以使用分类ConvNets用于弱监督的对象分割。」

Guided Back-Propogation [2014]

Paper: Striving for Simplicity: The All Convolutional Net [2014]

本文提出了一种新的完全由卷积层构成的神经网络。由于以前的解释方法不适用于他们的网络,因此他们引入了引导式反向传播。

该反向传播可在进行标准梯度上升时过滤掉传播时产生的负激活。作者称,他们的方法「可以应用于更广泛的网络结构。」

接下来是梯度加权类激活映射(gradient-weighted class activation mapping,Grad-CAM) 。它利用「任何目标概念的梯度,流入最后的卷积层,生成一个粗糙的定位映射,突出图像中的重要区域,以预测概念。」

该方法的主要优点是进一步推广了可以解释的神经网络类(如分类网络、字幕和可视化问答(VQA)模型) ,以及一个很好的后处理步骤,围绕图像中的关键对象对解释进行集中和定位。

像前面的论文一样,此方法从计算类评分函数相对于输入图像的梯度开始。

但是,SmoothGrad通过在输入图像中添加噪声,然后针对图像的这些扰动版本中的每一个来计算梯度,从而在视觉上锐化这些基于梯度的灵敏度图。将灵敏度图平均在一起可以得到更清晰的结果。

Integrated Gradients [2017]

Paper: Axiomatic Attribution for Deep Networks [2017]

不同于以往的论文,本文的作者从解释的理论基础入手。它们「确定了归因方法应该满足的两个基本公理——敏感性和实现不变性」。

他们用这些原理来指导设计一种新的归属方法(称为综合梯度),该方法可以产生高质量的解释,同时仍然只需要访问模型的梯度; 但是它添加了一个「基线」超参数,这可能影响结果的质量。

Blur Integrated Gradients [2020]

Paper: Attribution in Scale and Space [2020]

论文研究了一个最新技术---- 这种方法被提出来用于解决具体的问题,包括消除「基线」参数,移除某些在解释中倾向于出现的视觉伪影。

此外,它还「在尺度/频率维度上产生分数」,本质上提供了图像中重要物体的尺度感。

下面这张图比较了所有这些方法:

原文标题:图像识别的可视化解释史

文章出处:【微信公众号:中科院长春光机所】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100713
  • 机器学习
    +关注

    关注

    66

    文章

    8406

    浏览量

    132561

原文标题:图像识别的可视化解释史

文章出处:【微信号:cas-ciomp,微信公众号:中科院长春光机所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    怎么对神经网络重新训练

    重新训练神经网络是一个复杂的过程,涉及到多个步骤和考虑因素。 引言 神经网络是一种强大的机器学习模型,广泛应用于图像识别、自然语言处理、语音识别等领域。然而,随着时间的推移,数据分布可能会
    的头像 发表于 07-11 10:25 449次阅读

    递归神经网络的实现方法

    (Recurrent Neural Network,通常也简称为RNN,但在此处为区分,我们将循环神经网络称为Recurrent RNN)不同,递归神经网络更侧重于处理树状或图结构的数据,如句法分析树、自然语言的语法结构等。以下将从递归
    的头像 发表于 07-10 17:02 312次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展
    的头像 发表于 07-10 15:20 1020次阅读

    神经网络预测模型的构建方法

    神经网络模型作为一种强大的预测工具,广泛应用于各种领域,如金融、医疗、交通等。本文将详细介绍神经网络预测模型的构建方法,包括模型设计、数据集准备、模型训练、验证与评估等步骤,并附以代码
    的头像 发表于 07-05 17:41 641次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 558次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 729次阅读

    深度神经网络的设计方法

    结构的构建,还包括激活函数的选择、优化算法的应用、正则化技术的引入等多个方面。本文将从网络结构设计、关键组件选择、优化与正则化策略、以及未来发展趋势四个方面详细探讨深度神经网络的设计方法
    的头像 发表于 07-04 13:13 452次阅读

    卷积神经网络与循环神经网络的区别

    网络结构,分别适用于不同的应用场景。本文将从基本概念、结构组成、工作原理及应用领域等方面对这两种神经网络进行深入解读。
    的头像 发表于 07-03 16:12 3189次阅读

    bp神经网络是深度神经网络

    Network)有相似之处,但它们之间还是存在一些关键的区别。 一、引言 神经网络是一种模拟人脑神经元结构的计算模型,它由大量的神经元(或称为节点)组成,这些神经元通过权重连接在一起
    的头像 发表于 07-03 10:14 829次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 1152次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍卷积神经网络的分类
    的头像 发表于 07-03 09:40 453次阅读

    卷积神经网络和bp神经网络的区别

    化能力。随着深度学习技术的不断发展神经网络已经成为人工智能领域的重要技术之一。卷积神经网络和BP神经
    的头像 发表于 07-02 14:24 3643次阅读

    神经网络在数学建模中的应用

    数学建模是一种利用数学方法和工具来描述和分析现实世界问题的过程。神经网络是一种模拟人脑神经元结构和功能的计算模型,可以用于解决各种复杂问题。在数学建模中,
    的头像 发表于 07-02 11:29 925次阅读

    基于神经网络算法的模型构建方法

    神经网络是一种强大的机器学习算法,广泛应用于各种领域,如图像识别、自然语言处理、语音识别等。本文详细介绍了基于神经网络算法的模型构建方法,包括数据预处理、
    的头像 发表于 07-02 11:21 515次阅读

    神经网络架构有哪些

    神经网络架构是机器学习领域中的核心组成部分,它们模仿了生物神经网络的运作方式,通过复杂的网络结构实现信息的处理、存储和传递。随着深度学习技术的不断发展,各种
    的头像 发表于 07-01 14:16 693次阅读