0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如果碳原子变成二维结构会表现出怎样的能力?

hl5C_deeptechch 来源:DeepTech深科技 作者:DeepTech深科技 2021-01-06 14:57 次阅读

当我们用铅笔在纸上书写绘画的时候,可能并不会意识到黑色的石墨笔芯有什么神奇之处,但如果从微观物理科学的角度来看,却是另一个充满奥妙的世界。

石墨是碳同素异形体的一种形态,碳原子可组成平面六边形环平铺结构,堆叠起来便是石墨,因这些层状结构之间仅有微弱的结合力,可以轻易造成相互滑动、脱落。石墨也因此表现出质地较软且有滑腻感的特性,不仅能用来写字,还能做润滑材料,同时科学家们利用石墨材料较好的耐腐蚀性、导电性与导热性等,在产业界展开广泛应用。

而碳原子的神奇之处在于,不同的排列组合能形成属性截然不同的材料。例如在极高压力下,每个碳原子会以四面体状与另外四个碳原子键合,形成一个三维密铺网状结构,这种结构的结晶便是具备较高透明度和超强硬度的钻石,与石墨相比也变成了不导电材质。

2a3b2728-4fd2-11eb-8b86-12bb97331649.png

图|碳的两种常见同素异形体,分别是钻石(左)及石墨(右)(来源:维基百科)

如果碳原子变成二维结构又会表现出怎样的能力?答案便是在凝聚态物理领域火了十多年的超级材料:石墨烯。通俗来讲,即单原子层平面的石墨,这种单层原子组成的晶体材料也称作二维材料,据了解,1 毫米厚度的石墨大约是由 300 万层石墨烯堆叠而成。

2004 年,英国曼彻斯特大学的物理学家安德烈・海姆(AndreGeim)和康斯坦丁・诺沃肖洛夫(Konstantin Novoselov)成功在实验室从石墨中分离出了石墨烯,并在室温下观察到石墨烯中的量子霍尔效应,2010 年,二人因对石墨烯的开创性贡献共同获得了诺贝尔物理学奖。石墨烯作为人类成功制备出的第一款二维材料,被科学家们广泛誉为是改变 21 世纪的材料之王,吸引了各国物理学家对此展开深入科研。它不仅是目前人类已知强度最高、最薄的纳米材料,而且具备超导电性、极好的热传导性和光学特性等。

一种新材料的应用边界有多广,取决于对其物理特性的了解有多深,在过去超过 15 年的时间里,科学家对石墨烯的研究已然走向深水区,但关于石墨烯的特性我们了解透彻了么?

来自麻省理工学院(MIT)物理系的助理教授巨龙,近年来通过融合光学、微器件加工及电学输运测量等跨领域实验手段,揭示了更多关于石墨烯材料的全新物理特性和应用前景,其创新发明的实验技术也对二维材料的物理研究起到了重要助推作用,凭借极具开拓性的科研贡献,他成功入选了《麻省理工科技评论》“35 岁以下科技创新 35 人” 2020 年中国区榜单。

在日前的一次交流中,巨龙向 DeepTech 讲述了他眼中的二维材料 2.0 时代。

图|《麻省理工科技评论》“35 岁以下科技创新 35 人” 2020 年中国区榜单入选者巨龙

二维材料 2.0 时代

巨龙今年 33 岁,本科毕业于清华大学物理系,2009 年 - 2015 年期间,他在加州大学伯克利分校先后获得物理学硕士和博士学位,随后进入到康奈尔大学卡弗里纳米科学研究所以及原子和固体物理研究所做博士后研究,2019 年 1 月,加入麻省理工学院物理系担任助理教授。

在外界看来,多年偏基础物理科学的研究不免会有些枯燥,但对巨龙来说,兴趣是最好的内心驱动力,他所领导的课题组目前也是聚焦于对二维材料的一些基本物理性质的研究。

巨龙介绍,从 2005 年至今,科学界基本是一边研究已发现的二维材料性质,另一方面,也在不断寻找新的二维材料。石墨烯是这个领域里的第一个材料,近 15 年时间里科学家们已经做了很多突破性工作,曾经有一段时间,业界认为对石墨烯的相关特性都已经搞清楚了,于是就把注意力跟重心转移到去研究其他的二维材料。

图|两层石墨烯以 1.1 度的偏转夹角叠起来时实现了 1.7K 温度下的超导(来源:Quanta Magazine)

转折点发生在 2018 年初,一项重磅研究在扭曲双层石墨烯中观察到新型超导现象,被称为“魔角石墨烯”,DeepTech 曾对此进行过采访报道:《21岁 MIT 中国科学家连发两篇Nature论文:室温超导有望实现重大突破,石墨烯揭开其中“魔法” | 独家》。

与传统超导有很多不一样的特性,此发现虽然离高温超导甚远,但对揭开超导原理之谜意义深远,诺贝尔物理奖得主罗伯特・劳夫林(Robert Laughlin)曾评论该发现是 “一个令人目眩的暗示”,未来可能帮助推演设计出常温超导体,此后,石墨烯又重新成为整个二维材料乃至整个凝聚态物理领域非常前沿的研究焦点。

“如果你只考虑一层二维材料的话,它该有什么样的性质,说实话十几年时间大家都研究得比较清楚了,但如果你把二维材料想象成一张纸,不同的纸有不同的属性,两张纸可以叠起来,同理,你也可以把二维材料连接起来,这个事情就变得非常有趣,它们之间会产生相互作用,表现出跟两张完全分开的纸非常不一样的物理特性,从结构的角度来讲,科学家就可以获得之前自然界中所不存在的材料。”

在巨龙看来,二维材料目前已进入 2.0 时代,科学家们在 1.0 时代主要研究单个的二维材料的性质,研究完可能就去寻找下一种二维材料。但目前在 1.0 的基础上,科学家们对各种二维材料的性质理解比较清楚的情况下,突然打开了一个全新的领域,可以把不同的二维材料组合在一起,或是控制扭转的角度产生更多实验变量,包括探索与拓扑材料的联系等,然后研究发现了全新的物理性质。

二维材料 2.0 时代刚刚揭幕,正在不断有惊喜产生。

图|多层石墨烯概念图(来源:pixabay)

三篇论文,三个开创性发现

2011 年,巨龙第一次在实验中观测并证明了石墨烯中等离子体的存在及其基本物理性质,这个新发现被《自然 -纳米技术》进行了专题报道,论文被引用超过 2300 次,目前是该细分领域被引用最多的文章,对石墨烯等离子学的研究具有开创性。

等离激元作为电子集体震荡的量子形式,在材料的电学响应方面扮演着最基本和重要的角色,而且,与等离子激元相关的电磁场的波长可以比具有相同频率的光的波长短几个数量级。这意味着,等离子体可用来控制纳米级的电磁辐射,它们对固体中的电子对外部磁场的响应以及超材料在负折射、超透镜和隐身涂层等应用中的功能都起到关键作用。

这项研究发现,石墨烯纳米带中的等离子体具有广泛的可调谐频率,并可与光发生强烈的相互作用。巨龙和团队通过改变石墨烯纳米带宽度和其中的电荷载流子浓度,可以在较宽的太赫兹频率范围内调谐石墨烯等离子体共振,等离子体频率可从∼1.5 太赫兹调整到∼6 太赫兹。

这些结果为从近红外到远红外可调的各种器件打开了大门,包括超材料器件(如调制器、滤波器、偏振器、减速器、隐身器件和超级透镜),等离子器件(包括生物和化学传感器)和光电子器件(振荡器放大器、光电探测器、高速通讯互联等),揭示了基于石墨烯材料全新的等离子体学和太赫兹超材料结合的科研思路。

2bc2990a-4fd2-11eb-8b86-12bb97331649.png

图|石墨烯微带阵列可以通过不同方式进行调整(来源:Berkeley Lab)

2015 年,巨龙的又一项工作成果再次被《自然》杂志和许多主流物理媒体报道,他和同事在双层石墨烯的畴壁上发现了拓扑保护的一维电子传导通道,这些传导通道是 “谷极化” 的。

在实验手段上,巨龙结合了近场红外纳米级显微镜和低温电迁移测量技术,记录了双层石墨烯畴壁上一维弹道电子传导通道的第一批实验观察结果,它们的存在为探索石墨烯中独特的拓扑相和能谷物理学提供了广阔前景。

能谷电子学作为量子计算的潜在途径,在高科技行业同样受到极大关注,电子的能谷自由度类似于电子自旋,利用能谷自由度在数据处理速度方面比传统电子学中使用的电荷具有巨大优势,能够用来存储和传递信息,可以制作出创新的纳米光电子器件,也有望发展成与传统电子学和自旋电子学并行的下一代电子学学科。

图|博士阶段的巨龙(左一)(来源:Berkeley Lab)

同样是在双层石墨烯研究领域,2017 年,巨龙在博士后科研阶段,凭借在实验技术方面的创新再次有了全新发现,论文以《双层石墨烯中的可调激子》为题发表在《科学》杂志。

激子是固体材料中电子和空穴的束缚态,对绝缘体和半导体的光学性质起着关键作用。在这项研究中,巨龙和团队利用了光电流光谱法研究了封装在六方氮化硼中的高质量双层石墨烯(BLG),进而观察到两个明显的激子共振,其激子光学吸收峰线宽较窄,可从中红外到太赫兹范围内调谐。

这使得双层石墨烯在新型激光器和检测器的开发中具有潜在的意义,传统半导体材料的光学性质完全由其结构和化学组分决定,而在双层石墨烯中可以通过外加电场轻易地调控出传统半导体从未有过的性质。

图|红外线照亮双层石墨烯并产生激子(来源:Cornell Chronicle)

这些激子的光学跃迁研究发现与许多技术应用相关,例如分子光谱、材料分析、热成像和天文应用等,特别是在此范围内具有高品质因数的强且原位可调谐激子共振,有望让石墨烯成为适用于各种光学和光电应用更好的材料,例如可调红外探测器、发光二极管和激光器。

不断有新发现的背后得益于对实验手段的改进,巨龙在康奈尔大学的博士后工作期间,从零开始搭建了一套近场红外显微镜,并发展出一套全新的磁场中的广谱红外微光谱技术,这是一套微米尺度下的傅里叶变换光电能谱技术,对进一步研究石墨烯和其他二维材料提供了重要手段。

2cd373e6-4fd2-11eb-8b86-12bb97331649.jpg

图|巨龙课题组主页展示的科研技术方向(来源:MIT)

多尝试别人没有尝试过的思路

“这三篇论文关注的材料对象虽然都是石墨烯,但侧重于它的几个非常不一样的物理性质的研究。对于一个新材料,我们更关注的是它能够给我们带来什么全新的认知?它相比于传统的材料有什么更好的特性?我们怎么去挖掘?以这样的兴趣和问题作为出发点,然后再去设计我们的实验,每一篇文章基本都是小的领域内第一篇开创性的文章。” 巨龙表示。

关于在科研课题选择方面的逻辑,巨龙介绍,如果局限在一个细分的方向,继续往下去做研究,应该还是会出其他的成果,但他和团队在挑选课题的时候,更倾向于从最感兴趣、最重要的、比较大的物理问题出发,想法和思路上的创新比较被看重,而不是完全基于已做出一些成果,下一步在这个小方向上继续做一些递进式改进。

能做出开创性的研究有什么诀窍么?

巨龙回答:“二维材料有很多意想不到的性质,但现在的瓶颈往往是我们缺乏合适的实验工具来研究它。例如我们当时在做 2017 年的那篇研究论文的时候,遇到的问题就是大家预测这个材料可能会有特殊的物理现象,但是我们缺乏一个手段,能够真正地在实验上探测到这些特性的数据。所以本质还是从科学问题出发,我们并不受限于自己能做什么,而是看我们需要做什么,如果一个问题驱动,需要去匹配一些新的手段,我们就想办法去发明这样的手段。”

目前,巨龙自己带领的课题组仍在不断尝试用新的实验手段去探测石墨烯 2.0 时代的一些很重要的其他课题,去尝试别人没有尝试过的科研路径,而得益于实验技术手段的创新,也能做出一些非常特别、独家原创的实验结果,在竞争激烈的石墨烯材料科研领域,与其他研究团队明显区分开来。

巨龙的导师和同事都评价他是国际凝聚态物理领域一颗冉冉升起的新星,对于自己现阶段成就和外界的赞誉,他表示,正如二维材料 2.0 时代刚刚起步,自己其实也处于独立研究生涯比较早期的阶段,现阶段最大的期望是能够尽快把自己的课题组研究做起来,过渡到一个更稳定的科研阶段。

“重点还是脚踏实地。” 巨龙最后说道。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 石墨烯
    +关注

    关注

    54

    文章

    1527

    浏览量

    79056
  • 二维材料
    +关注

    关注

    0

    文章

    38

    浏览量

    5480
  • 石墨材料
    +关注

    关注

    0

    文章

    8

    浏览量

    2844

原文标题:三篇论文开创三项全新研究!双层石墨烯加电可调材料特性,二维材料进入2.0时代

文章出处:【微信号:deeptechchina,微信公众号:deeptechchina】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    FPC软板二维码标识功能?简直是黑科技!

    现在的黑科技是越来越多了,板子上印个 二维码用手机扫一下就能将 将 二维变成你的电子产品说明书,用来介绍产品功能;呈现教学视频, 个人觉得图文 二维码的功能十分丰富,不仅拥有产品溯源与出入
    发表于08-07 17:46

    Labview生成二维

    Labview 的一个Demo,生成 二维码。
    发表于08-01 17:12 0次下载

    二维PDMA可以使用描述符链吗?

    我正在尝试使用 二维描述符连锁。 编写了一些 二维描述符链的代码。 但我有一些疑问,比如 1. 二维PDMA 可以使用描述符链吗? 2. 如果1 是,请附上一些代码 我们是否可以使用 2
    发表于05-31 08:16

    二维码模块的奥秘:如何提升其性能表现

    二维码模块的出现使得很多原本毫不相干的领域产生了一丝联系,如移动支付、物流追踪、身份识别等。而把他们联系起来的就是 二维码模块,这个小小的工具成为了生活的重要组成部分,现在我们就深入的探讨下 二维码模块的性能特点及其影响因素。
    的头像 发表于05-16 15:04 578次阅读
    <b class='flag-5'>二维</b>码模块的奥秘:如何提升其性能<b class='flag-5'>表现</b>?

    手持机二维扫描模组,轻松读取各类条码、二维码,长距离扫描

    。既然安装一款高效、准确的扫码模组能够使手持机具备轻松快速识别各类条码、 二维码的 能力,那么哪款 二维扫描模组适合嵌入手持设备呢?不妨深圳远景达(RAKINDA)这款L
    的头像 发表于04-03 14:14 237次阅读
    手持机<b class='flag-5'>二维</b>扫描模组,轻松读取各类条码、<b class='flag-5'>二维</b>码,长距离扫描

    高度排列石墨烯气凝胶,用于多功能复合材料最新进展!

    石墨烯源于独特的面内蜂窝状晶格 结构和sp2杂化 碳原子,通过异常强的碳-碳键键合, 表现出显著的各向异性电学、机械学和热学性能。
    的头像 发表于03-12 11:44 718次阅读
    高度排列石墨烯气凝胶,用于多功能复合材料最新进展!

    石墨烯需在制备与应用领域持续突破

    石墨烯是一种 二维材料,从 结构上来说,它是由 碳原子以六元环组构而成的 二维平面。它是碳的一种新型 二维纳米 结构
    的头像 发表于01-02 13:51 377次阅读

    二维材料增强光纤

    二维材料可用于涂覆光纤以增强非线性相互作用,为构建未来非线性和超快激光系统开辟新途径。NIR 和 SWIR 光谱测量并量化输出特性和光学行为。石墨烯和过渡金属 硫属化物 (TMD)等 原子
    的头像 发表于12-01 06:34 257次阅读

    二维材料层的共振拉曼光谱

    复杂的 结构。这些所谓的范德华异质 结构具有新的物理特性,是利用 二维材料构建新型光电器件的基础。事实证明,不仅异质 结构中材料的顺序很重要。 英国南安普顿大学的利亚姆·麦克唐纳和大卫·史密斯
    的头像 发表于11-30 15:34 347次阅读
    <b class='flag-5'>二维</b>材料层的共振拉曼光谱

    石墨烯的性能及应用介绍

    石墨烯(Graphene)是一种以sp²杂化连接的 碳原子紧密堆积成单层 二维蜂窝状晶格 结构的新材料。
    的头像 发表于11-29 10:46 1330次阅读
    石墨烯的性能及应用介绍

    研究二维材料中的铁电性

    光谱学在材料科学和 二维材料特性研究中发挥着重要作用。拉曼光谱和 次谐波光谱揭示了材料的 结构,需要使用科学光谱系统进行灵敏检测。 2D 材料是一类可以以 原子级薄的结晶层(低至单
    的头像 发表于11-22 06:29 340次阅读
    研究<b class='flag-5'>二维</b>材料中的铁电性

    python如何定义二维空数组

    在Python中,可以通过使用列表嵌套的方式来定义 二维空数组。具体步骤如下: Step 1: 创建一个空的 二维列表 要创建一个空的 二维数组,首先需要定义数组的行数和列数。我们可以使用两个变量来表示行
    的头像 发表于11-21 15:12 1220次阅读

    python怎么创建二维数组

    如何创建 二维数组在Python中是一个常见的问题。在Python中,我们可以使用嵌套的列表(list of lists)或者使用NumPy库来创建 二维数组。在本文中,我们将详细介绍这两种方法,以及
    的头像 发表于11-21 15:10 2795次阅读

    制造二维TMD晶体管面临的挑战

    半导体 (CMOS) 器件的最新进展,并特别强调了 二维界在五个关键研究领域仍需解决的问题:接触、沟道生长、栅极氧化物、可变性和掺杂。虽然 二维TMD晶体管具有巨大的潜力,但还需要更多的研究来了解 二维材料在
    的头像 发表于11-07 09:55 1026次阅读
    制造<b class='flag-5'>二维</b>TMD晶体管面临的挑战

    OpenHarmony应用实现二维码扫码识别

    的decode函数对 二维码图像进行解析。 如果解析成功, 返回成功的标记和解析的结果。 如果解析失败,会在catch语句块里进行处理, 返回
    发表于08-23 17:00