1 基于人工智能技术的OCR应用-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于人工智能技术的OCR应用

新机器视觉 来源:中国档案报 作者:徐亮 2021-04-09 10:54 次阅读

光学字符识别(Optical Character Recognition,OCR)是将图像中的文字信息转化为可供计算机处理的字符信息的技术,发挥着计算机“眼睛”的功能,是机器与现实世界进行视觉交互的重要技术基础。

早期的OCR技术可追溯到1870年,电报技术和为盲人设计的阅读设备的出现标志着OCR的诞生。近年来,随着人工智能技术在OCR中的实际应用,OCR的性能和效率都得到了很大的提升。

如今,基于人工智能的OCR已经广泛应用于金融、交通、政务、司法、医疗等多个领域,进入到人们生产生活的方方面面。

档案OCR是利用OCR技术对纸质档案数字化副本等图像文件中的字符形状进行识别、文字转换和文本输出、呈现的过程。

利用人工智能技术开展档案OCR工作,对于提高工作效率和准确性,加快自动著录、全文检索、数据分析等系统功能更好实现,推动档案信息资源建设从数字化向数据化转型具有重要意义。

档案OCR工作现状

2013年以来,在国家档案局大力实施“存量数字化、增量电子化”的战略背景下,纸质档案数字化副本大量产生。全国各级档案馆(室)存量档案数字化工作成效显著,数字化比例大幅提高,很多档案部门已完成全部馆藏档案的数字化工作。

截至2019年年底,全国各级综合档案馆馆藏档案数字化副本容量已达1407.8万GB(吉字节)。当前,档案OCR工作已全面启动,相关标准规范已适时出台。部分地区档案部门在完成纸质档案数字化工作的基础上,纷纷开展了档案OCR工作。

也有一些档案部门在开展档案数字化工作的同时,同步开展了档案OCR工作。为规范相关工作的开展,国家档案局因势利导,于2019年12月发布《纸质档案数字复制件光学字符识别(OCR)工作规范》,规定了纸质档案数字复制件OCR工作的组织、实施和管理要求,确定了开展档案OCR工作的总体原则、工作流程、质量规定等。基于此,档案部门相关工作取得了大量成果,未来档案OCR将融入更广泛、更深层次的档案工作中。

传统OCR的不足

在人工智能技术广泛应用之前,文字的自动化识别是一项十分艰巨、亟需解决的问题。传统OCR识别是以文字基本外形为基础,对文字字符之间的差别进行统计分析,再找到一组最优的、可以代表文字之间差异的统计学参数,从而实现对文字的筛选和识别。

传统OCR工作流程包括图像导入、图像预处理、版面分析、文字切割、文字识别等过程。多年来,人们对传统OCR工作流程进行过大量优化研究,但是受限于流程的复杂性和人工设计特征的表达能力等,传统的文字检测与识别方法对于较为复杂的图像,例如带有畸变以及模糊的图像,最终的文字识别结果往往不尽如人意。

传统OCR对中文字符识别的不足,主要表现在以下4个方面。

一是传统OCR处理流程的工序太多,且多串行,导致错误不断被传递放大。如,在OCR处理流程中,假如每一步都是90%的正确率,看似很高,但是经过5步的错误叠加之后,结果就已经不合格了。

二是传统OCR处理流程涉及较多人工设计,并不一定能够抓住问题的本质。例如,在文字的二值化这一预处理过程中,二值化的阈值在一些情况下很难调整好。由于这个模型的复杂度较低且无法充分拟合全部数据,在实际处理过程中不得不过滤掉很多有用的信息。

三是在一些背景稍微复杂或者存在变体文字的情况下,传统OCR基本会失效,处理模型的适应性较弱。版面分析以及行切分的方式只能处理相对简单的场景,一旦面临复杂排版等情况,就很难实现准确处理。

四是对单字的识别,传统OCR无法考虑到上下文的语义关联。为了解决这个问题,传统OCR进行了很多组合,如,对识别的结果进行动态路径搜索。在路径寻优过程中,经常需要结合文字的外观特征以及语言模型进行处理,存在较多的耦合,导致在识别系统中堆砌了较多的算法

即便如此,传统OCR也存在很多无法处理的问题,如,手写字体等存在较多的笔画粘连,传统OCR很难进行切分。以上这些不足,造成传统OCR的识别率相对较低,识别时间相对较长。

基于人工智能技术的OCR

近年来,随着计算机视觉、自然语言理解、知识图谱等人工智能技术在OCR中的实际使用,OCR的性能和效率都得到了很大提升。通过深度学习的自适应学习驱动方式,能够更好地应对传统OCR产生的一些问题,简化参数预处理的流程,实现端到端的处理,提高OCR识别率。

目前,基于人工智能技术的OCR在简体印刷文字方面的识别率已达98%以上。人工智能OCR技术还能应用于具有多样性和复杂性的识别场景。如,不同大小、字体、颜色、亮度、对比度的文字,排列和对齐方式不相同的文字,图像的非文字区域与文字区域存在相似的纹理,低对比度、模糊断裂、残缺文字等。因此,人工智能OCR不仅能应用于文档的识别,还可应用于自然场景文字图像的识别。

此外,人工智能OCR还能提高工作效率、节省大量成本。基于此,将人工智能OCR应用在档案工作中,具有重要的作用和意义,必将成为支撑档案行业数字转型、智能升级、融合创新的重要基础。人工智能OCR工作流程主要包括图像输入、文本检测、文本识别、人工确认、人工干预等。首先,将需要识别的纸质档案数字化副本图像单个或批量导入OCR系统中。

其次,进行文本检测。文本检测主要是定位文字在数字图像中的位置,并进行位置标注。文本检测的方法主要有基于候选框的文本检测、基于语义分割的文本检测,以及基于两种方法的混合方法等。基于候选框的文本检测是先预生成若干候选框,之后再回归坐标和分类,最后经过NMS(非极大抑制)算法得到最终的检测结果;基于语义分割的文本检测是通过FPN(特征金字塔网络)直接进行像素级别的语义分割,并处理得到相关的坐标。再次,进行文本识别。

文本识别主要是针对定位好的文字区域,识别文本的具体内容,并将图像中的一串文字转换为对应的字符。文本识别的算法可分为基于CTC(连接时序分类)技术的方法和基于注意力机制的网络模型两大类。其中,基于CTC技术的方法可以有效地捕获输入序列的下文依赖关系,同时能够很好地解决图像和文本字符对不齐的问题,但在自由度较大的手写场景下会出现识别错误。

基于注意力机制的网络模型主要应用于卷积神经网络特征权重的分配上,并提高强特征的权重、降低弱特征的权重,在由图像到文字的解码过程中有天然的语义捕获能力。然后,进行人工确认。对OCR识别后的结果进行确认,判断是否出错。

在人工确认过程中,可以采用后期批量处理等灵活性较强的方式。最后,进行人工干预,修正OCR识别结果中可能存在的错误。人工智能OCR可采用独立式或嵌入式等方式应用在档案数字化系统中。独立式是作为独立软件使用,或者通过应用程序接口(API)进行数据交互,不依赖于档案数字化系统。

嵌入式是将OCR模块嵌入档案数字化系统,作为其功能的一部分,需要在设计开发档案管理系统时进行统一规划,或对已有的系统进行改造。目前,人工智能OCR已被引入多个行业领域,但在档案行业应用中仍存在难点和不足,主要体现在两个方面。

一是档案文字存在多样性。档案类型多种多样,文字内容包罗万象,存在不同语言、字体、大小、颜色、亮度、排列和对齐方式,以及图像内容对比度低、模糊断裂、残缺等问题,甚至存在出现识别难度更大的不同时期手写体、繁简体等各种情况。这些问题或情况给档案OCR工作带来了各种挑战,人工智能OCR也无法解决所有的问题,这就需要工作人员结合实际情况,寻找基于特定技术条件的最优工作解决方案。

二是技术瓶颈。近年来,虽然人工智能OCR使机器识别文字的性能和效率得到了显著提升,但是,机器识别文字的能力和水平与工作人员理解图像中文字的能力和水平相比,依然存在较大差距。总体来看,仍需继续不断提升OCR的鲁棒性、效率性和智能化水平,才能更好地将其应用在难度更大、情况更复杂的档案工作中。
编辑:lyn

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47183

    浏览量

    238203
  • 计算机视觉
    +关注

    关注

    8

    文章

    1698

    浏览量

    45968
  • OCR
    OCR
    +关注

    关注

    0

    文章

    144

    浏览量

    16348

原文标题:图像识别技术在档案OCR工作中的应用

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    了重要作用。在未来,随着嵌入式系统和人工智能技术的不断进步,我们可以预见更多创新应用的出现,为社会发展和生活品质的提升带来更多可能性。
    发表于 11-14 16:39

    对话华为大咖,探讨油气行业数字化转型和人工智能技术的应用与实践

    数智化浪潮下,千行百业迎来新变革。油气行业作为国民经济的重要组成部分,是数字化转型的主战场之一,人工智能技术的应用已成为油气数字化转型的关键一步。可油气行业转型现状如何?人工智能技术如何应用于油气
    的头像 发表于 10-19 20:08 789次阅读
    对话华为大咖,探讨油气行业数字化转型和<b class='flag-5'>人工智能技术</b>的应用与实践

    未来智慧建筑:人工智能技术的无限可能

    随着科技的不断发展,人工智能技术正逐渐渗透到各行各业,其中,在智能建筑领域的应用备受瞩目。智能建筑结合了传统建筑与先进科技的完美融合,在提高建筑效率、节能环保、增强安全性等方面发挥着重要作用。古河云
    的头像 发表于 10-17 14:07 241次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在人工智能图像处理领域的应用前景将更加广阔。以下
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    人工智能技术在集成电路中的应用

    随着科技的飞速发展,人工智能(AI)与集成电路技术已成为推动现代电子工业进步的重要力量。两者相辅相成,共同推动着电子产品的智能化、高效化和可靠化。本文将从多个角度详细探讨人工智能技术
    的头像 发表于 07-15 09:43 2686次阅读

    Google开发专为视频生成配乐的人工智能技术

    近日,科技巨头Google旗下的人工智能研究实验室DeepMind宣布了一项引人注目的技术突破——V2A技术(Video to Audio),这是一项专为视频生成配乐的人工智能技术。这
    的头像 发表于 06-20 11:03 503次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    人工智能技术的优势有哪些

    人工智能技术的优势
    的头像 发表于 01-19 15:58 3108次阅读

    aigc是什么意思和人工智能有什么区别

    AIGC是人工智能通用计算平台(Artificial Intelligence General Computing)的缩写,它是一种集成了人工智能技术与通用计算能力的平台。与传统的人工智能技术相比
    的头像 发表于 01-11 09:49 1w次阅读

    人工智能技术在军事情报领域的应用背景

    人工智能作为人类智慧的辅助和延伸,突破了人类认知效率低、考虑因素有限等生理限制。目前,人工智能技术在自然语言处理、图像识别、无人驾驶、医学诊断、军事智能化等领域取得了许多突破性的研究进展。
    发表于 01-05 09:25 968次阅读
    <b class='flag-5'>人工智能技术</b>在军事情报领域的应用背景