1 异构计算真就完美无缺吗-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

异构计算真就完美无缺吗

lPCU_elecfans 来源:德赢Vwin官网 网 作者:周凯扬 2021-12-21 09:25 次阅读

异构计算已经成了半导体业界不得不思考的一个话题,传统通用计算的性能捉襟见肘,过去承诺的每隔一段时间芯片性能翻倍的豪言壮语已经没有人再提了。如今我们用到的手机中,各种除CPU以外的计算单元层出不穷,无论是神经网络处理器还是图像处理器。

异构计算的存在可以说创造了另一个维度,这个维度上我们又有了堆性能的空间,小至手机SoC、汽车芯片,大到服务器芯片和超算处理器,异构带来了更大的算力。但与此同时,异构计算也带来了一些潜在的问题。

异构计算的崛起

异构计算其实早在计算机时代的早期就开始零星出现了,比如英特尔在80年代推出的浮点协处理器(FPU)i487,Inmos./ST在1996年推出的多媒体加速器Chameleon等等。转眼进入了新世纪,异构出现的频率也越来越高,2010年苹果推出了首个自研的处理器A4,将CPU、GPU和其它加速器集成至一起。在超算领域,加速器和协处理器也数量也在逐步增加。

2020年以后,各国的超级计算机计划都定位在了Exascale的百亿亿级别,要想实现目标,要么靠堆核心规模来堆性能,要么就是选择异构计算。如今前十的超算系统中,有一半以上都采用了CPU+GPU的异构设计。

明眼人都能看出,这种CPU+GPU的异构设计也开始变得愈发紧密,比如英伟达今年宣布的Arm CPU Grace,该处理器靠着英伟达专利互联技术NVLink的加持,成功将CPU与GPU之间的互联速度做到了夸张的900GB/s,是传统PCIe的10倍以上,CPU更是靠LPDDR5X实现了500GB/s的内存带宽。

非传统的架构更是层出不穷,Graphcore的IPU、谷歌的TPU、矢量引擎和FPGA等等,相信XPU的命名形式马上就要用完26个字母了。促使大家选择异构的动力究竟是什么?答案很简单,异构给到了一个更高效的方案,能够实现的算力更高。既然你CPU在计算上落后了,我GPU自然要上位,更何况我还有这么多成熟的I/O和互联技术为我撑腰。

异构计算真就完美无缺?

异构计算就真的如此完美吗?并非如此。异构计算的存在其实也引出了不少隐患,比如极度差异化的编程模型,从过去的单向编程转为了多向编程。因为异构系统中存在多个计算设备,又有着不同的系统架构、指令集和编程模型,因此异构系统的编程与传统的CPU编程相比有很大的差距。通常来说,异构混合计算系统需要多套不同的代码,这增大了应用开发的难度,纸面参数是好看了,却苦了软件开发者

其次,GPU、FPGA和AI处理器厂商都推出了截然不同的加速器方案,这些方案不仅仅采用了自己专用的处理器架构,还有自己的执行指令和编译器。在这样不统一的架构下,将并行程序移植到异构处理器上需要的可不只是重新编译,还有代码重写。也正因如此,HPC的代码生态虽然不弱,但近半数以上可能永远都不会被移植到其他加速器上,甚至这一部分工作量还分摊到了加速器厂商的软件开发工作量上。

所以,必须得使用优秀的软件栈,这样才能让开发者充分利用异构处理器的计算资源,而不用在编程时考虑复杂的硬件细节。现在已经有了不少跨平台的编程标准,比如C++/Fortran、OpenMP、SYCL和Kokkos等。

最后是复杂的数据存取过程,异构带来的不仅是不同层级的计算架构,还有不同层级的存储架构,比如主存储、主缓存、设备主存、设备缓存和寄存器等等。数据要在多种存储类型之间移动,程序执行要在同时对多种存储进行存取,这些存储方式的带宽和延迟也不尽相同。

异构计算的未来

在近期举办的CIUK 2021大会上,HPC研究组的Simon McIntosh-Smith教授发表了他自己对异构计算未来的看法。他认为异构计算的趋势还将继续发展下去,差异化不会消失,但也不会出现极度差异化的情况。

其次CPU与GPU的关系将更加紧密,比如缓存一致和封装集成等,其他加速器在特定场景下声称的性能数据都很优秀,但要说通用计算性能,GPU还是要略胜一筹。而且依目前的趋势来看,CPU也在慢慢汲取GPU上的优点,比如HBM、宽矢量处理器的核心、核心内部的加速器等等。编程的困境固然已经有了改善的迹象,但还有一段长路要走。

审核编辑:何安淇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10854

    浏览量

    211563
  • 异构计算
    +关注

    关注

    2

    文章

    100

    浏览量

    16293

原文标题:异构计算的前世今生

文章出处:【微信号:elecfans,微信公众号:德赢Vwin官网 网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【一文看懂】什么是异构计算

    随着人工智能、深度学习、大数据处理等技术的快速发展,计算需求的复杂性不断提升。传统的单一计算架构已难以满足高效处理复杂任务的要求,异构计算因此应运而生,成为现代计算领域的一个重要方向。
    的头像 发表于 12-04 01:06 1337次阅读
    【一文看懂】什么是<b class='flag-5'>异构计算</b>?

    详解Arm计算平台的优势

    对于人工智能 (AI) 而言,任何单一硬件或计算组件都无法成为适合各类工作负载的万能解决方案。AI 贯穿从云端到边缘侧的整个现代计算领域,为了满足不同的 AI 用例和需求,一个可以灵活使用 CPU、GPU 和 NPU 等不同计算
    的头像 发表于 12-03 16:53 274次阅读

    LDO有哪些优缺点

    LDO(Low Dropout Regulator,低压差线性稳压器)作为一种常见的电源管理器件,在电子系统中扮演着重要的角色。其独特的低压差特性和稳定性使得LDO在众多应用场合中备受青睐。然而,LDO并非完美无缺,它同样存在着一些不足之处。
    的头像 发表于 09-11 10:55 986次阅读

    澎峰科技高性能计算库PerfIPP介绍

    PerfIPP是专为计算机视觉处理和信号处理设计的优化计算库,计算驱动层基于OpenCL标准,支持异构计算加速。
    的头像 发表于 09-02 17:39 361次阅读
    澎峰科技高性能<b class='flag-5'>计算</b>库PerfIPP介绍

    浅谈国产异构双核RISC-V+FPGA处理器AG32VF407的优势和应用场景

    关于国产异构双核RISC-V+FPGA处理器AG32VF407的具体优势和应用场景浅谈如下: 优势 异构计算能力 : 异构双核设计结合了RISC-V的高效指令集和FPGA的灵活可编程性,能够针对特定
    发表于 08-31 08:32

    打造异构计算新标杆!国数集联发布首款CXL混合资源池参考设计

    参考设计是首个支持异构计算架构的CXL硬件设备,标志着CXL技术在数据中心领域迎来异构计算新阶段。   国数集联基于FPGA与自主研发的CXL协议IP的先进特性,可实现CPU、GPU、DDR、SSD
    的头像 发表于 08-06 14:19 308次阅读
    打造<b class='flag-5'>异构计算</b>新标杆!国数集联发布首款CXL混合资源池参考设计

    AvaotaA1全志T527开发板AMP异构计算简介

    Avaota SBC 的部分平台内具有小核心 CPU,与大核心一起组成了异构计算的功能。 在异构多处理系统中,主核心和辅助核心的存在旨在共同协作,以实现更高效的任务处理。这种协作需要系统采取一系列
    发表于 07-24 09:54

    异构计算:解锁算力潜能的新途径

    在这个数据爆炸的时代,计算力是推动社会与科技创新的核心。从日常智能设备的流畅运行到超级计算机的尖端模拟,均依赖强大的计算能力。但面对多样化的复杂计算任务,单一处理器难以胜任。于是,
    的头像 发表于 07-18 08:28 7817次阅读
    <b class='flag-5'>异构计算</b>:解锁算力潜能的新途径

    智能时代的路,将由异构计算铺就

    AI时代,在计算支持领域,云计算、边缘计算等相继崛起,我们能看到的算力形态逐渐多样化。同时,在我们看不到的地方,算力需求依然旺盛。随着“十四五”规划的不断落地,加快数字化发展,打造具有国际竞争
    的头像 发表于 07-03 08:28 226次阅读
    智能时代的路,将由<b class='flag-5'>异构计算</b>铺就

    华夏芯被申请破产清算,倒在AI芯片异构计算爆发前夜

    清算一案。   华夏芯的辉煌战绩   华夏芯成立于2014年,是一家创新的异构处理器IP提供商和芯片解决方案提供商。公司拥有完全自主知识产权的CPU、DSP、GPU 和 AI 处理器 IP,基于创新的“统一指令集架构”、微架构和工具链,面向物联网、边缘
    的头像 发表于 04-18 00:54 2634次阅读

    AI服务器异构计算深度解读

    AI服务器按芯片类型可分为CPU+GPU、CPU+FPGA、CPU+ASIC等组合形式,CPU+GPU是目前国内的主要选择(占比91.9%)。
    发表于 04-12 12:27 599次阅读
    AI服务器<b class='flag-5'>异构计算</b>深度解读

    FPGA异构计算架构的深度对比研究

    FPGA本质是一种可编程的芯片。可以把硬件设计重复烧写在它的可编程存储器里,从而使FPGA芯片可以执行不同的硬件设计和功能。
    发表于 04-01 14:53 779次阅读
    FPGA<b class='flag-5'>异构计算</b>架构的深度对比研究

    高通NPU和异构计算提升生成式AI性能 

    异构计算的重要性不可忽视。根据生成式AI的独特需求和计算负担,需要配备不同的处理器,如专注于AI工作负载的定制设计的NPU、CPU和GPU。
    的头像 发表于 03-06 14:15 781次阅读

    如何评价智能车载异构计算芯片性能?

    车企不断的宣传让我们知道了芯片的重要性。那么在智能驾驶领域里,到底什么是重要的呢,评估面向自动驾驶的计算芯片性能时,有没有什么科学的依据呢?
    发表于 01-25 12:45 729次阅读
    如何评价智能车载<b class='flag-5'>异构计算</b>芯片性能?

    关于PCB布局布线技巧的104的问题

    现在,虽然有很多软件可以实现PCB自动布局布线。但是随着信号频率不断提升,很多时候,工程师需要了解有关PCB布局布线的基本的原则和技巧,才可以让自己的设计完美无缺
    发表于 01-02 15:58 716次阅读