在云计算接手了大部分计算任务的当下,边缘计算也在萌芽。与计算资源和服务都放在数据中心的云计算相比,如果在算力和延迟得以保证的情况下,边缘端的计算反而能给用户带来更好的体验。为此,一众半导体公司开始探索边缘计算芯片,为AI/ML等技术提供边缘端的计算助力。
谷歌Edge TPU
Edge TPU / 谷歌
Edge TPU是谷歌专为边缘推理打造的ASIC芯片,这也是谷歌除了Cloud TPU和Google Cloud两大云端产品外,主打边缘计算的产品。在隐私/机密以及低延迟、小带宽等因素的限制下,不少应用并不适合上云,所以为边缘端提供AI推理计算就成了解决需求的思路。而Edge TPU的大小甚至不及一个硬币,无疑可以用于广泛的AI边缘部署。
Coral加速器模组 / 谷歌
谷歌更是搭建了一个本地AI平台Coral,提供一系列硬件、软件工具和预编译的模型,帮助开发者构建具备本地AI能力的设备。以Coral加速器模组为例,这是一个MCM模组,可以用于高速推理机器学习模型。该模组内置了Edge TPU ML加速器,并集成了电源管理,支持PCIe 2.0x1或USB 2.0的接口,INT8精度下的最高算力可达4 Tops,功耗达到2W。最重要的是其大小只有15x10x1.5mm。
此外,谷歌已经开始在手机芯片Tensor中集成TPU,而Tensor中的TPU已经达到了5W的功耗。考虑到谷歌除了手机以外,已经开始进军智能穿戴和智能家居等一系列物联网市场,在谷歌自己的AI生态下,想必也会进一步扩展Edge TPU的性能表现。
九天睿芯 ADA200
考虑到冯诺依曼架构在功耗与速度上的劣势,现在不少半导体公司都开始探索存算一体的全新架构。九天睿芯也是其中一个参与者,其ADA系列芯片甚至加入了感知这一维度,做到了vwin 感知前处理+模数混合存内计算的感存算一体架构,直接在内存中进行混合信号计算。
ADA100 / 九天睿芯
根据九天睿芯官网的描述,ADA100系列是主打超低功耗低算力的传感器处理芯片,等效算力达到1Gops,最低功耗只有20μW,与其他数字芯片相比可以说是降维打击了,适用于可穿戴等AIoT设备。ADA100已于去年11月量产,将于今年批量出货。
ADA200 / 九天睿芯
而ADA200系列则是九天睿芯主打的中低算力芯片,其算力范围在1到2 Tops之间,可以用于低功耗无线摄像头、AR/VR和手机平板这类对算力要求更高一截的场景,该芯片预计今年年底量产。
AIStorm Mantis
在AI掀起的潮流下,不少厂商打上了传感器的主意。这点在TWS耳机、智能眼镜等小型智能化设备中尤为明显,毕竟如果在CMOS图像传感器或MEMS音频传感器上提供足够的边缘算力,就可以省去集成各类AI加速器的烦恼。
比如在传统的CMOS图像传感器方案中,像素阵列传输给源极跟随器,在经过ADC、ISP和MIPI SerDes,将其输出给数字AI,再经过MCU、GPU、DSP或FPGA的处理才能生成事件,如此数字化的过程使得延迟、功耗和成本都高出了一截。
Mantis AIS SoC / AIStorm
为了解决这个问题,初创企业AIStorm的解决方案就是将AI集成到传感器中。以他们的Mantis AIS SoC为例,该方案可将传感器变为一个模拟电荷域AI的输入层,Mantis直接接受传感器数据而无需数字化,再用ANN网络中的模拟神经元完成乘加等运算,最终生成一个决定输出。
Mantis用不到多先进的工艺,现有的产品只用到了高塔半导体的180nm节点和Dongbu的90nm节点,却依然可以在始终开启的情况下做到15 μW的功耗。虽然Mantis图像传感器只有96x96的像素分辨率,但这对于某些小型化应用来说已经足够,何况AIStorm面向的市场也仅仅只是简单低成本的物联网设备。此外,AIStorm也在开发支持QVGA和全高清分辨率的升级版本。
去年AIStorm也宣布与楼氏电子达成合作,一同开发低功耗高性能的音频解决方案,直接为模拟域接收音频数据,让TWS之类的小型音频设备在极低功率水平下也能完成AI降噪、算法声音增强等高级信号处理任务。
小结
从以上这些边缘计算芯片可以看出,传统的架构在边缘端已经不再是主流。无论是延迟敏感还是高算力要求的应用,都在推进边缘计算芯片在架构上做出创新。在这些芯片赋能的多接入边缘计算下,边缘计算将为云端计算分担一部分任务,更好地服务终端用户。
谷歌Edge TPU
Edge TPU / 谷歌
Edge TPU是谷歌专为边缘推理打造的ASIC芯片,这也是谷歌除了Cloud TPU和Google Cloud两大云端产品外,主打边缘计算的产品。在隐私/机密以及低延迟、小带宽等因素的限制下,不少应用并不适合上云,所以为边缘端提供AI推理计算就成了解决需求的思路。而Edge TPU的大小甚至不及一个硬币,无疑可以用于广泛的AI边缘部署。
Coral加速器模组 / 谷歌
谷歌更是搭建了一个本地AI平台Coral,提供一系列硬件、软件工具和预编译的模型,帮助开发者构建具备本地AI能力的设备。以Coral加速器模组为例,这是一个MCM模组,可以用于高速推理机器学习模型。该模组内置了Edge TPU ML加速器,并集成了电源管理,支持PCIe 2.0x1或USB 2.0的接口,INT8精度下的最高算力可达4 Tops,功耗达到2W。最重要的是其大小只有15x10x1.5mm。
此外,谷歌已经开始在手机芯片Tensor中集成TPU,而Tensor中的TPU已经达到了5W的功耗。考虑到谷歌除了手机以外,已经开始进军智能穿戴和智能家居等一系列物联网市场,在谷歌自己的AI生态下,想必也会进一步扩展Edge TPU的性能表现。
九天睿芯 ADA200
考虑到冯诺依曼架构在功耗与速度上的劣势,现在不少半导体公司都开始探索存算一体的全新架构。九天睿芯也是其中一个参与者,其ADA系列芯片甚至加入了感知这一维度,做到了vwin 感知前处理+模数混合存内计算的感存算一体架构,直接在内存中进行混合信号计算。
ADA100 / 九天睿芯
根据九天睿芯官网的描述,ADA100系列是主打超低功耗低算力的传感器处理芯片,等效算力达到1Gops,最低功耗只有20μW,与其他数字芯片相比可以说是降维打击了,适用于可穿戴等AIoT设备。ADA100已于去年11月量产,将于今年批量出货。
ADA200 / 九天睿芯
而ADA200系列则是九天睿芯主打的中低算力芯片,其算力范围在1到2 Tops之间,可以用于低功耗无线摄像头、AR/VR和手机平板这类对算力要求更高一截的场景,该芯片预计今年年底量产。
AIStorm Mantis
在AI掀起的潮流下,不少厂商打上了传感器的主意。这点在TWS耳机、智能眼镜等小型智能化设备中尤为明显,毕竟如果在CMOS图像传感器或MEMS音频传感器上提供足够的边缘算力,就可以省去集成各类AI加速器的烦恼。
比如在传统的CMOS图像传感器方案中,像素阵列传输给源极跟随器,在经过ADC、ISP和MIPI SerDes,将其输出给数字AI,再经过MCU、GPU、DSP或FPGA的处理才能生成事件,如此数字化的过程使得延迟、功耗和成本都高出了一截。
Mantis AIS SoC / AIStorm
为了解决这个问题,初创企业AIStorm的解决方案就是将AI集成到传感器中。以他们的Mantis AIS SoC为例,该方案可将传感器变为一个模拟电荷域AI的输入层,Mantis直接接受传感器数据而无需数字化,再用ANN网络中的模拟神经元完成乘加等运算,最终生成一个决定输出。
Mantis用不到多先进的工艺,现有的产品只用到了高塔半导体的180nm节点和Dongbu的90nm节点,却依然可以在始终开启的情况下做到15 μW的功耗。虽然Mantis图像传感器只有96x96的像素分辨率,但这对于某些小型化应用来说已经足够,何况AIStorm面向的市场也仅仅只是简单低成本的物联网设备。此外,AIStorm也在开发支持QVGA和全高清分辨率的升级版本。
去年AIStorm也宣布与楼氏电子达成合作,一同开发低功耗高性能的音频解决方案,直接为模拟域接收音频数据,让TWS之类的小型音频设备在极低功率水平下也能完成AI降噪、算法声音增强等高级信号处理任务。
小结
从以上这些边缘计算芯片可以看出,传统的架构在边缘端已经不再是主流。无论是延迟敏感还是高算力要求的应用,都在推进边缘计算芯片在架构上做出创新。在这些芯片赋能的多接入边缘计算下,边缘计算将为云端计算分担一部分任务,更好地服务终端用户。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网
网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
mcu
+关注
关注
146文章
17123浏览量
350973 -
AI芯片
+关注
关注
17文章
1879浏览量
34988 -
边缘计算
+关注
关注
22文章
3084浏览量
48890
发布评论请先 登录
相关推荐
Orin芯片与边缘计算结合
Orin芯片,作为英伟达推出的一款高性能AI处理器,与边缘计算的结合,无疑将为智能计算领域带来革命性的变化。 一、Orin芯片的创新特点 O
边缘计算架构设计最佳实践
。 边缘网关 :作为中间层,聚合多个边缘设备的数据,执行初步处理与过滤,有时还承担设备管理、协议转换等功能。 边缘计算平台 软件环境 :运行
边缘计算网关是什么?有什么应用场景
数据传输所需的时间,提高响应速度,并减轻核心网络和数据中心的负载。 边缘计算网关的应用场景很广泛,主要包括以下几个方面: 1. 工业物联网(IIoT):在工业环境中,边缘
边缘计算是什么意思?边缘计算的应用
边缘计算(Edge Computing)是一种分布式计算范式,它将计算任务从数据中心迁移到网络边缘设备(如智能手机、物联网传感器等)上进行处
支持大模型部署和运行的边缘计算SoC芯片
德赢Vwin官网
网报道(文/李弯弯)如今,AI在边缘侧的应用越来越广泛,这其中少不了AI SoC芯片的支持,边缘计算AI SoC是一种集成了人工智能(AI)和
PLC边缘计算网关如何选择?
随着工业自动化和物联网技术的快速发展,PLC作为工业自动化的核心设备,其数据采集与处理能力日益受到重视。PLC边缘计算网关作为连接PLC与云端服务的桥梁,不仅承担着数据收集、传输和初步处理的角色
边缘计算单元多接入能力怎么算
和负载特征等。通过综合考虑这些因素,可以更准确地评估边缘计算单元的多接入能力,并采取相应的优化措施来提高系统的性能和可靠性。
边缘计算网关与边缘计算的融合之道
随着物联网、大数据和人工智能的飞速发展,数据处理和分析的需求呈现出爆炸式增长。传统的中心化数据处理模式已难以满足实时性、低延迟和高带宽的需求,边缘计算应运而生,成为解决这一难题的关键技术。而边缘
边缘计算和云计算的区别和联系
边缘计算和云计算是两种不同的计算模型,它们在应用场景、架构、数据处理等方面有着显著的差异。本文将详尽、详实、细致地阐述边缘
评论