本文将带您了解深度学习的工作原理与相关案例。
什么是深度学习?
深度学习是机器学习的一个子集,与众不同之处在于,DL 算法可以自动从图像、视频或文本等数据中学习表征,无需引入人类领域的知识。深度学习中的“深度”一词表示用于识别数据模式的多层算法或神经网络。DL 高度灵活的架构可以直接从原始数据中学习,这类似于人脑的运作方式,获得更多数据后,其预测准确度也将随之提升。
此外,深度学习是在语音识别、语言翻译和物体检测等任务中实现高精密和高准确性的主要技术。近期,它也在 AI 领域实现了许多突破,包括 Google DeepMind 的 AlphaGo、自动驾驶汽车、智能语音助手等成果。
深度学习的工作原理
深度学习使用多层人工神经网络(ANN),这是由输入和输出之间节点的几个“隐藏层”组成的网络。
人工神经网络通过将非线性函数应用于输入值的加权求和,以此转换输入数据。该转换叫作神经层,该函数则称为神经元。
层的中间输出称为特征,会用作下一层的输入。神经网络会通过重复转换来学习多层非线性特征(比如边缘和形状),之后会在最后一层汇总这些特征以生成(对更复杂物体的)预测。
在一个称为梯度下降的过程中,通过反向传播,错误会再次通过网络发送回来,并调整权重,从而改进模型。神经网络的学习方式是,改变网络的权重或参数以便将神经网络的预测值与期望值之差降至最低。此过程会重复数千次,根据生成的错误调整模型的权重,直到错误不能再减少。我们将人工神经网络从数据中学习的这一阶段称为训练。 在此过程中,层会学习模型的优化特征,而该模型的优势是特征不需要预先确定。
深度学习用例
深度学习常用于计算机视觉、对话式 AI 和推荐系统等应用。计算机视觉应用使用深度学习从数字图像和视频中获取知识。对话式 AI 应用程序能够帮助计算机通过自然语言实现理解和交流能力。推荐系统使用图像、语言和用户兴趣来提供有意义且相关的搜索结果和服务。
深度学习正在应用于自动驾驶汽车、智能私人助理和更智能的网络服务。先进的团队和组织都在使用欺诈检测和供应链现代化等深度学习应用程序。
深度学习算法有许多不同的变体,比如以下几种:
只将信息从一层向前馈送至下一层的人工神经网络称为前馈人工神经网络。多层感知器 (MLP) 是一种前馈 ANN,由至少三层节点组成:输入层、隐藏层和输出层。MLP 擅长使用已标记的输入进行分类预测。它们是可应用于各种场景的灵活网络。
卷积神经网络是识别物体的图像处理器。在某些情况下,CNN 图像识别表现优于人类,包括识别猫、血液中的癌症迹象以及 MRI 扫描影像中的肿瘤。CNN 已成为当今自动驾驶汽车、石油勘探和聚变能源研究领域的点睛之笔。在医疗健康方面,它们可以加快医学成像发现疾病的速度,并且更快速地挽救生命。
时间递归神经网络是解析语言模式和序列数据的数学工具。
这些网络正在推动一场基于语音的计算革命,并为Amazon Alexa、Google Assistant 和 Apple Siri 提供能够实现听力和语音的自然语言处理的大脑。它们还为 Google 的自动完成功能提供了预见性魔力,可以自行填写搜索查询中的行。
RNN 应用程序不仅限于自然语言处理和语音识别。其还可用于语言翻译、股票预测和程序化交易。
为检测金融欺诈,可以使用 RNN 对异常支出模式进行红色标记,RNN 尤其擅长猜测一系列数据中接下来的变化。美国运通已部署基于深度学习的模型,这些模型已使用 NVIDIA TensorRT进行优化,并运行在 NVIDIA Triton推理服务器上,以检测欺诈。
深度学习为何对研究人员和数据科学家至关重要
借助 NVIDIA GPU 加速的深度学习框架,研究人员和数据科学家可显著提升深度学习训练的速度,只需几小时就能完成之前需要几天才能完成的训练,而原先需要几周才能完成的训练只需几天即可完成。准备好部署模型后,开发者可依靠面向云、嵌入式设备或自动驾驶汽车的 GPU 加速推理平台,为计算密集型深度神经网络实现高性能、低延迟的推理。
面向开发者的 NVIDIA 深度学习
GPU 加速深度学习框架能够为设计和训练自定义深度神经网络带来灵活性,并为 Python 和 C/C++ 等常用编程语言提供编程接口。MXNet、PyTorch、TensorFlow 等广泛使用的深度学习框架依赖于 NVIDIA GPU 加速库,能够提供高性能的多 GPU 加速训练。
-
NVIDIA
+关注
关注
14文章
4978浏览量
102980 -
AI
+关注
关注
87文章
30726浏览量
268870 -
人工神经网络
+关注
关注
1文章
119浏览量
14619 -
机器学习
+关注
关注
66文章
8406浏览量
132553 -
深度学习
+关注
关注
73文章
5500浏览量
121107
原文标题:NVIDIA 大讲堂 | 什么是深度学习(Deep Learning)?
文章出处:【微信号:NVIDIA_China,微信公众号:NVIDIA英伟达】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论