1 人工智能学习 迁移学习实战进阶-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能学习 迁移学习实战进阶

龙腾亚太 来源:龙腾亚太 作者:龙腾亚太 2022-04-28 17:13 次阅读

上课时间安排:

2022年05月27日 — 2022年05月30日

No.1 第一天

一、机器学习简介与经典机器学习算法介绍

  1. 什么是机器学习?
  2. 机器学习框架与基本组成
  3. 机器学习的训练步骤
  4. 机器学习问题的分类
  5. 经典机器学习算法介绍

章节目标:机器学习是人工智能的重要技术之一,详细了解机器学习的原理、机制和方法,为学习深度学习与迁移学习打下坚实的基础。

poYBAGJqWp2ANaKaAAA6rAWhBA0078.jpg

二、深度学习简介与经典网络结构介绍

  1. 神经网络简介
  2. 神经网络组件简介
  3. 神经网络训练方法
  4. 卷积神经网络介绍
  5. 经典网络结构介绍

章节目标:深入了解神经网络的组成、训练和实现,掌握深度空间特征分布等关键概念,为深度迁移学习奠定知识基础

pYYBAGJqWp6AOk58AABgXHCCjAY118.jpg

三、迁移学习基础

  1. 迁移学习绪论
  2. 基于样本的迁移学习
  3. 基于特征的迁移学习
  4. 基于分类器适配的迁移学习

章节目标:掌握迁移学习的思想与基本形式,了解传统迁移学习的基本方法,对比各种方法的优缺点,掌握迁移学习的适用范围。

poYBAGJqWp6AOYmcAAB1HyYvPTI629.jpg

四、深度迁移学习介绍

  1. 深度迁移学习概述
  2. 基于距离函数的深度迁移学习
  3. 基于对抗网络的深度迁移学习
  4. 深度异构迁移学习方法介绍
  5. 深度领域泛化学习介绍

章节目标:掌握深度迁移学习的思想与组成模块,学习深度迁移学习的各种方法,对比各种方法的优缺点,掌握深度迁移学习的适用范围。

pYYBAGJqWp6AQ1T4AACzRB4FkWc317.jpg

No.2 第二天

五、迁移学习前沿方法介绍

  1. 深度迁移网络结构设计
  2. 深度迁移学习目标函数设计
  3. 全新场景下的迁移学习

章节目标:掌握深度迁移学习的网络结构设计、目标函数设计的前沿方法,了解迁移学习在PDA、Source-Free DA上的应用。

poYBAGJqWp6AQ1lYAAA6MC2_zyk031.jpg

六、迁移学习前沿应用

  1. 迁移学习在语义分割中的应用
  2. 迁移学习在目标检测中的应用
  3. 迁移学习在行人重识别中的应用
  4. 图片与视频风格迁移

章节目标:掌握深度迁移学习在语义分割、目标检测、行人重识别等任务中的应用,学习图像/视频风格迁移方法,了解风格迁移在实际生活中的应用。

pYYBAGJqWp6APzAEAABhF3WLcjU904.jpg

七、小样本学习、Transformer等前沿方法与应用

  1. 小样本学习概念与基本方法介绍
  2. 小样本学习应用
  3. Transformer概念与基本方法介绍
  4. Transformer在图像领域的应用

章节目标:掌握小样本学习、Transformer等前沿方法和基本思想,了解小样本学习、Transformer等在实际场景下的应用。

pYYBAGJqWp6APnBAAADeflMHmYE898.jpg

No.3 第三天

八、实验实操之实操环境搭建

  1. 硬件准备:GPU显存11GB以上
  2. 软件准备:Linux操作系统(Ubuntu16.04以上),显卡驱动安装(512.54),CUDA Toolkit(10.1)和cuDNN加速库(7.6.4),VS Code编辑器安装,Jupyter Notebook
  3. 编程语言和框架:Python3.8.5、torch==1..07、torchvision==0.8.2、mmcv-full==1.3.7、opencv-python==4.4.0、matplotlib==3.4.2、numpy==1.19.2、Pillow==8.3.1、scikit-learn==1.0.2
  4. 数据集准备:Office-31、IRVI、GTA5、Cityscapes、Foggy cityscapes等

注:硬件准备由主办方提供云服务器

poYBAGJqWp-AIuJjAAAcIIGCtI8652.jpg

九、实验实操之深度迁移学习实践

  1. 掌握PyTorch中的基本原理和编程思想。
  2. 理解在一个新的场景或数据集下,何时以及如何进行迁移学习。
  3. 利用PyTorch加载数据、搭建模型、训练网络以及进行网络微调操作。
  4. 给定迁移场景,利用daib库和生成对抗技术独立完成图像分类中的领域适配。
  5. 迁移效果的可视化,利用机器学习库scikit-learn中的t-SNE对迁移过后的高维数据进行可视化。
pYYBAGJqWp-AXmsrAABlpb3ogjc561.jpg

十、实验实操之图片与视频风格迁移实践

  1. 掌握基于生成对抗网络的风格迁移技术。
  2. 图像/视频风格迁移网络的搭建,重点掌握编码器和解码器的内在逻辑和不同损失函数的运用。
  3. 实践红外视频转换到可见光视频的风格迁移。
poYBAGJqWp-AJVmFAABC0rN0l14995.jpg

十一、实验实操之自动驾驶中的跨域语义分割实践

  1. 掌握语义分割发展现状及代表性工作,如FCN,DeepLab系列等。
  2. 了解常用的语义分割评价指标(PA、mPA、mIoU、FWIoU)和常见数据集(PASCAL VOC2012,ADE20K、BDD100K、Cityscapes、GTA5、Dark Zurich)。
  3. 语义分割工具箱MMSegmentaion的认识和使用。
  4. 设计一个分割模型能够从仿真环境中得到的数据迁移到真实场景下产生的数据。
pYYBAGJqWp-ADHZoAADM2uYNqS4683.jpg

十二、实验实操之目标检测实践

  1. 掌握目标检测算法的基本框架以及目标检测中的经典模型,如R-CNN系列的两阶段检测模型和YOLO系列的单阶段检测模型。
  2. 掌握目标检测模型的评测指标(IOU和mAP)、标准评测数据集(Pascal VOC,MS COCO和Cityscapes)以及检测模型中的一些训练技巧,如数据增强、多尺度训练/测试、预测框微调/投票法、在线难例挖掘、软化非极大抑制、RoI对齐和集成。
  3. 实践基于Transformer的端到端目标检测框架的搭建,并在新的数据集上与基于CNN的网络进行迁移性能的对比。
poYBAGJqWp-AB4vxAACY2AA-G3Q559.jpg

培训专家

培训专家来自中国科学院计算技术研究所、清华大学、北京理工大学等科研机构和大学的高级专家,拥有丰富的科研及工程技术经验,长期从事人工智能芯片FPGA、深度学习等领域的教学与研究工作。

审核编辑:符乾江

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5500

    浏览量

    121109
  • 强化学习
    +关注

    关注

    4

    文章

    266

    浏览量

    11245
  • 迁移学习
    +关注

    关注

    0

    文章

    74

    浏览量

    5559
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能的发展历程可以追溯到上世纪50年代,经
    发表于 11-14 16:39

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2479次阅读
    <b class='flag-5'>人工智能</b>、机器<b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。 其次,第6章通过多个案例展示了人工智能在能源科学中
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析复杂的数据集,从而发现隐藏在数据中的模式和规律。 2. 高性能
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    人工智能推荐系统中强大的图形处理器(GPU)一争高下。其独特的设计使得该处理器在功耗受限的条件下仍能实现高性能的图像处理任务。 Ceremorphic公司 :该公司开发的分层学习处理器结合了
    发表于 09-28 11:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    预训练和迁移学习的区别和联系

    预训练和迁移学习是深度学习和机器学习领域中的两个重要概念,它们在提高模型性能、减少训练时间和降低对数据量的需求方面发挥着关键作用。本文将从定义、原理、应用、区别和联系等方面详细探讨预训
    的头像 发表于 07-11 10:12 1005次阅读

    人工智能、机器学习和深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning, DL)已成为
    的头像 发表于 07-03 18:22 1260次阅读

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展,人工智能(AI)技术特别是深度学习在各个领域展现出了强大的潜力和广泛的应用价值。深度学习作为人工智能的一个核心分支,通过模拟人脑神经网络的结构和功能,实现了对复杂数据的自动
    的头像 发表于 07-03 18:20 4090次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    https://t.elecfans.com/v/25653.html 人工智能 初学者完整学习流程实现手写数字识别案例_Part1 13分59秒 https://t.elecfans.com/v
    发表于 05-10 16:46

    机器学习怎么进入人工智能

    人工智能(Artificial Intelligence,AI)是一门涉及计算机、工程、数学、哲学和认知科学等多个领域的交叉学科,旨在构建智能化计算机系统,使之能够自主感知、理解、学习和决策。如今
    的头像 发表于 04-04 08:41 297次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    ://t.elecfans.com/v/25653.html 人工智能 初学者完整学习流程实现手写数字识别案例 28分55秒 https://t.elecfans.com/v/27184.html
    发表于 04-01 10:40

    人工智能和机器学习的顶级开发板有哪些?

    机器学习(ML)和人工智能(AI)不再局限于高端服务器或云平台。得益于集成电路(IC)和软件技术的新发展,在微型控制器和微型计算机上实现机器学习算法和深度学习神经网络成为可能。这些安装
    的头像 发表于 02-29 18:59 818次阅读
    <b class='flag-5'>人工智能</b>和机器<b class='flag-5'>学习</b>的顶级开发板有哪些?

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 七:python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17