长期以来,在功率应用方案中,热管理一直是挑战。当项目有空间放置大型的散热器时,从电路板和半导体器件上将废热导出较为容易。然而,随着输出功率提升以及功率密度和电路密度的要求,散热处理的难度越来越大。对于当今的大电流、高功率应用和 650 V GaN 功率场效应晶体管,通常需要更高效的器件散热方式,甚至已成为强制性的要求。因此,顶部散热方式的 CCPAK 封装,可以提供更佳散热性能。
在大功率器件封装中,最主要的散热要素就是传导路径。对于传统的 SMD 封装,废热通过器件的底部散热,将器件引脚和 PCB 作为散热器使用。因为采用 PCB 进行散热的能力是有限的,为提高底部散热功率 MOSFET 的散热性能,通常在铺铜设计中,加入许多“过孔”,作为热传导的路径。
在某些应用中,要求更高的散热效率或者需要减少传输至 PCB 的热量,尤其是大电流既高功率的项目。例如数据中心的电源、通信基站设施、在 600V 或更高电压中作动的汽车系统。对于宽带隙器件(WBG)要求更高功率密度和更高的功率耗散,因此更具有挑战性。在这种情况下,找元件现货上唯样商城Nexperia 650 V GaN FET 顶部散热的 CCPAK 能够大幅提高性能。通过对 PCB 布局和半导体器件进行散热的优化,顶部散热可实现更高的功率密度并延长系统寿命。
CCPAK1212i – 轻松翻转实现顶部散热
由 Nexperia(安世半导体)开发的 CCPAK 封装,专注于为 650 V GaN HEMT 器件提供最优化的器件封装。关键的设计挑战之一是使用我们成熟的铜夹片技术在 HEMT 栅极和 FET 源之间建立连接。
如我之前在博客中讨论的“CCPAK:铜夹片技术进入高压应用”,在内部铜夹片设计中加入"支柱",可解决这一个挑战。不需要设计人员更改电路板的布局(使用外部连接时需要更改布局),这些内部支柱还提供一定程度的冗余、更出色的散热性能和分布电阻。
采用 CCPAK 封装,很容易翻转器件的外部接脚,让负责导热的铜片外露在器件封装顶部。然后,该外露的铜片可将芯片和 PCB 的废热更高效传导出去。对于更大电流既更高功率的应用,可以通过绝缘导热垫片连接到额外的散热器。
因此,采用 Nexperia顶部散热 CCPAK1212i 650 V GaN FET,可实现以下优点 ,更快的切换速度,提升效率,缩小尺寸,减轻重量,最大限度降低总体系统成本,同时为 大电流/高功率项目的设计人员,提供更好的散热效能。简而言之,与底部散热的器件相比,使用顶部散热的 Nexperia器件,可以实现更高的功率密度。
审核编辑:汤梓红
-
晶体管
+关注
关注
77文章
9404浏览量
136645 -
散热
+关注
关注
3文章
465浏览量
31615 -
FET
+关注
关注
3文章
614浏览量
62585 -
GaN
+关注
关注
19文章
1855浏览量
70549
发布评论请先 登录
相关推荐
评论