自从磷光材料被应用到OLED以来,基于磷光机制的有机发光器件研究快速发展,其中代表性的有红、绿、蓝单基色磷光器件和全磷光白色磷光器件。由于自旋禁阻的原因,磷光量子产率要比荧光低得多,因此通常采用重原子效应等方法来提高磷光量子产率。当引入重原子后,自旋轨道耦合作用加强,使禁阻的三重态向单重态的跃迁变为允许,分子停滞在三线态的时间大幅缩短,极大地提高了器件的内量子效率,常用的重金属原子有Ir、Pt、Re、Os、Cu等。
磷光材料一般应具备良好的光热稳定性、较大的分子吸光截面、较高的系间窜越能力、室温下有较高的磷光量子产率和较短的三线态寿命等特征。由于有机材料中磷光的绿光材料最容易获得,因而研究最早也是从磷光绿光OLED开始,其中Ir(ppy)₃是最具代表性的材料,被广泛地应用到磷光器件中。
磷光发射速率是发光机理研究中的重要参数,本文将以Ir(ppy)₃为例,使用BDF和MOMAP软件计算其磷光发射速率。首先需要通过BDF量化软件进行结构优化、频率计算和旋轨耦合计算,之后基于BDF的结构优化和频率计算结果文件、旋轨耦合计算结果文件使用MOMAP软件进行磷光辐射速率的计算。
首先使用量子化学计算软件BDF进行Ir(ppy)₃的基态S0和第一激发三重态T1的结构优化和频率计算。
准备Ir(ppy)₃分子结构的xyz文件如下:
61
Ir -2.606160230000 -0.262817540000 0.032585640000
C -3.837298770000 2.407777490000 0.243683290000
C -1.553000180000 2.622608110000 0.521271830000
C -3.991643180000 3.786525490000 0.422094600000
C -4.929719550000 1.476909230000 -0.003856060000
C -1.634158680000 3.988444110000 0.709067180000
H -0.591261780000 2.126459120000 0.554253960000
C -2.889293280000 4.581787990000 0.656041260000
H -4.972006580000 4.231616950000 0.376099570000
C -6.263398690000 1.888616610000 -0.076321100000
H -0.744068550000 4.570116630000 0.889344200000
H -2.999939670000 5.647195600000 0.795286530000
C -5.623129880000 -0.778047400000 -0.424041550000
C -7.264449980000 0.973962040000 -0.319493370000
H -6.527094820000 2.928025340000 0.057085040000
C -6.940359500000 -0.364034500000 -0.495248330000
H -5.397358100000 -1.824987250000 -0.570011260000
H -8.293855190000 1.298147200000 -0.375111620000
H -7.723296650000 -1.084118350000 -0.689505650000
C -2.780095460000 -2.271307610000 -0.073978550000
C -2.962145630000 -2.905938610000 1.179649240000
C -2.704720750000 -3.101798200000 -1.194651040000
C -3.053849400000 -4.297470620000 1.273150410000
C -3.052375550000 -2.037406190000 2.345262930000
C -2.797310890000 -4.477732940000 -1.095358170000
H -2.574810200000 -2.657655530000 -2.171485550000
C -2.970830350000 -5.080470100000 0.142706420000
H -3.190782260000 -4.777448690000 2.231582660000
C -3.251325250000 -2.483356810000 3.656088400000
H -2.735191030000 -5.089028800000 -1.985144810000
H -3.042943740000 -6.155896270000 0.221114210000
C -2.995026490000 0.148733040000 3.092507280000
C -3.319187740000 -1.576319800000 4.692855730000
H -3.353725050000 -3.536644150000 3.859562860000
C -3.186631940000 -0.222801710000 4.408749290000
H -2.888815760000 1.194668600000 2.833837140000
H -3.472767910000 -1.912494740000 5.707724440000
H -3.232610730000 0.522480480000 5.186904590000
N -2.927015180000 -0.717593640000 2.090156960000
C 0.125501920000 -0.309636820000 -1.075330180000
C 0.242318970000 -0.710559210000 1.197687130000
C 1.518232510000 -0.401785790000 -1.166132500000
C -0.762473880000 -0.044853840000 -2.198985150000
C 1.619464440000 -0.811598610000 1.179643800000
H -0.298309850000 -0.828666640000 2.128258480000
C 2.270161400000 -0.653514600000 -0.037593100000
H 2.007628100000 -0.277927520000 -2.118201950000
C -2.150460220000 -0.005742870000 -1.917121780000
C -0.287950380000 0.157363030000 -3.497950870000
H 2.165728000000 -1.009392350000 2.088259610000
H 3.346017750000 -0.726918300000 -0.099292420000
C -3.004998770000 0.237880450000 -2.994864780000
C -1.165335710000 0.397865570000 -4.532504760000
H 0.771521710000 0.127613130000 -3.708268180000
C -2.529020200000 0.436535570000 -4.277665910000
H -4.071982740000 0.267717660000 -2.824596670000
H -0.792761550000 0.552584980000 -5.535050450000
H -3.220629300000 0.622039860000 -5.087916480000
N -0.487689310000 -0.467248190000 0.117089220000
N -2.608631830000 1.850704260000 0.298598520000
C -4.578169480000 0.115167240000 -0.176155400000
打开Device studio,点击File-new project,命名为phosphorescence.hpf,将Ir(ppy)₃_s0.xyz拖入Project中,双击Ir(ppy)₃_s0.hzw。接下来进行Ir(ppy)₃基态S0的结构优化和频率计算。选中Simulator → BDF → BDF,在界面中设置参数。在BasicSettings界面中的Calculation Type选择Opt+Freq,方法选择PBE0泛函,基组在Basis中的All Electron类型中,选择Def2-SVP。Basic Settings界面中的其它参数使用推荐的默认值,不需要做修改。
在SCF Settings界面中,DFT Integral Grid选择Coarse,Convergence Threshold选择Tight。SCF Settings界面中的其它参数使用推荐的默认值,不需要做修改。
在OPT Settings界面中,Convergence Threshold选择Tight。OPT Settings界面中的其它参数使用推荐的默认值,不需要做修改。
Freq Settings界面中的参数使用推荐的默认值,不需要做修改。之后点击 Generatefiles 即可生成对应计算的输入文件。选中生成的bdf.inp文件,右击选择open with,打开该文件,如下所示:
$compass
Title
C33H24IrN3
Geometry
Ir -2.60616023 -0.26281754 0.03258564
C -3.83729877 2.40777749 0.24368329
C -1.55300018 2.62260811 0.52127183
C -3.99164318 3.78652549 0.42209460
C -4.92971955 1.47690923 -0.00385606
C -1.63415868 3.98844411 0.70906718
H -0.59126178 2.12645912 0.55425396
C -2.88929328 4.58178799 0.65604126
H -4.97200658 4.23161695 0.37609957
C -6.26339869 1.88861661 -0.07632110
H -0.74406855 4.57011663 0.88934420
H -2.99993967 5.64719560 0.79528653
C -5.62312988 -0.77804740 -0.42404155
C -7.26444998 0.97396204 -0.31949337
H -6.52709482 2.92802534 0.05708504
C -6.94035950 -0.36403450 -0.49524833
H -5.39735810 -1.82498725 -0.57001126
H -8.29385519 1.29814720 -0.37511162
H -7.72329665 -1.08411835 -0.68950565
C -2.78009546 -2.27130761 -0.07397855
C -2.96214563 -2.90593861 1.17964924
C -2.70472075 -3.10179820 -1.19465104
C -3.05384940 -4.29747062 1.27315041
C -3.05237555 -2.03740619 2.34526293
C -2.79731089 -4.47773294 -1.09535817
H -2.57481020 -2.65765553 -2.17148555
C -2.97083035 -5.08047010 0.14270642
H -3.19078226 -4.77744869 2.23158266
C -3.25132525 -2.48335681 3.65608840
H -2.73519103 -5.08902880 -1.98514481
H -3.04294374 -6.15589627 0.22111421
C -2.99502649 0.14873304 3.09250728
C -3.31918774 -1.57631980 4.69285573
H -3.35372505 -3.53664415 3.85956286
C -3.18663194 -0.22280171 4.40874929
H -2.88881576 1.19466860 2.83383714
H -3.47276791 -1.91249474 5.70772444
H -3.23261073 0.52248048 5.18690459
N -2.92701518 -0.71759364 2.09015696
C 0.12550192 -0.30963682 -1.07533018
C 0.24231897 -0.71055921 1.19768713
C 1.51823251 -0.40178579 -1.16613250
C -0.76247388 -0.04485384 -2.19898515
C 1.61946444 -0.81159861 1.17964380
H -0.29830985 -0.82866664 2.12825848
C 2.27016140 -0.65351460 -0.03759310
H 2.00762810 -0.27792752 -2.11820195
C -2.15046022 -0.00574287 -1.91712178
C -0.28795038 0.15736303 -3.49795087
H 2.16572800 -1.00939235 2.08825961
H 3.34601775 -0.72691830 -0.09929242
C -3.00499877 0.23788045 -2.99486478
C -1.16533571 0.39786557 -4.53250476
H 0.77152171 0.12761313 -3.70826818
C -2.52902020 0.43653557 -4.27766591
H -4.07198274 0.26771766 -2.82459667
H -0.79276155 0.55258498 -5.53505045
H -3.22062930 0.62203986 -5.08791648
N -0.48768931 -0.46724819 0.11708922
N -2.60863183 1.85070426 0.29859852
C -4.57816948 0.11516724 -0.17615540
End Geometry
Basis
Def2-SVP
Skeleton
Group
C(1)
$end
$bdfopt
Solver
1
MaxCycle
366
TolGrad
3.0E-5
TolStep
1.2E-4
IOpt
3
Hess
final
$end
$xuanyuan
Direct
$end
$scf
RKS
Charge
0
SpinMulti
1
DFT
PBE0
D3
Grid
Coarse
ThreshConv
1.0D-9 5.0D-7
MPEC+COSX
Molden
$end
$resp
Geom
$end
选中bdf.inp文件,右击选择Run,弹出如下服务器提交的界面:
点击Run提交作业。任务结束后bdf.out,bdf.out.tmp,bdf.scf.molden三个结果文件会出现在Project中。
选择bdf.out,右击show view,在Optimization对话框中,显示结构已经达到收敛标准。
在Frequency对话框中,检查频率,若不存在虚频证明结构已经优化到极小点。
选择bdf.out文件,右击open with containing folder打开所在文件夹,在bdf.out文件中查找‘converged in’,紧接着输出的‘Molecular Cartesian Coordinates (X,Y,Z) in Angstrom: ’下的结构即为优化好的Ir(ppy)₃的S0结构。
编辑:黄飞
- OLED
+关注
关注
119文章
6111浏览量
222760
原文标题:计算赏析丨Ir(ppy)₃ 磷光发射机制的理论探究(一)
文章出处:【微信号:hzwtech,微信公众号:鸿之微】欢迎添加关注!文章转载请注明出处。
发布评论请先登录
相关推荐
评论