1 卡诺图如何化简-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卡诺图如何化简

OpenFPGA 来源:OpenFPGA 作者:OpenFPGA 2022-11-01 09:02 次阅读

HDLBits 是一组小型电路设计习题集,使用 Verilog/SystemVerilog 硬件描述语言 (HDL) 练习数字硬件设计~

网址如下:

https://hdlbits.01xz.net/

关于HDLBits的Verilog实现可以查看下面专栏:

https://www.zhihu.com/column/c_1131528588117385216

缩略词索引

SV:SystemVerilog

从今天开始新的一章-Circuits,包括基本逻辑电路、时序电路、组合电路等。

今天更新整个关于卡诺图部分,数电忘记的,可以先回顾一下。

卡诺图

50ab7562-597f-11ed-a3b6-dac502259ad0.png

简介

卡诺图(KM或K -map)是一种简化布尔代数表达式的方法。Maurice Karnaugh在 1953年为Edward W. Veitch 1952 Veitch 图做了改进,并介绍了新的Marquand 图,即我们现在熟知的卡诺图。

卡诺图利用人类的模式识别能力减少了对大量计算的需求,还允许快速识别和消除潜在的竞争条件。

所需的布尔结果从真值表转移到二维网格中,在卡诺图中,单元格按格雷码排序,每个单元格位置代表输入条件的一种组合。单元格也称为最小项,而每个单元格值代表布尔函数的相应输出值。识别出最佳的 1 或 0 组,它们表示原始真值表中逻辑的规范形式的项。这些术语可用于编写表示所需逻辑的最小布尔表达式。

示例

卡诺图用于简化布尔代数函数。例如,考虑以下真值表描述的布尔函数。

函数的真值表

序号 A B C D f(A,B,C,D)
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 1
15 1 1 1 1 0

以下是使用布尔变量A、B、C、D描述未简化布尔代数中相同函数的两种不同符号。

50e4e1f8-597f-11ed-a3b6-dac502259ad0.png

mi是要映射的最小项(即,在真值表中输出为 1 的行)。

50effd9a-597f-11ed-a3b6-dac502259ad0.png

mi是要映射的最大项(即,真值表中输出为 0 的行)

50fdab70-597f-11ed-a3b6-dac502259ad0.png

在上面的例子中,四个输入变量可以用 16 种不同的方式组合,所以真值表有 16 行,卡诺图有 16 个位置。因此,卡诺图以 4 × 4 的网格排列。

行和列索引(显示在卡诺图的顶部和左侧)以格雷码而不是二进制数字顺序排列。格雷码确保每对相邻单元之间只有一个变量发生变化。完整卡诺图的每个单元格都包含一个二进制数字,表示该输入组合的函数输出。

分组

在构建卡诺图之后,它被用来寻找布尔代数最简单的可能形式之一——规范形式——获取真值表中的信息。卡诺图中相邻的 1 代表简化表达式的机会。最终表达式的最小项是通过在地图中圈出 1 组来找到的。Minterm 组必须是矩形的,并且面积必须是 2 的幂(即 1、2、4、8...)。最小项矩形应尽可能大,不包含任何 0。组可以重叠以使每个组更大。下例中的最优分组用绿、红、蓝线标记,红、绿组重叠。红色组是一个 2×2 的正方形,绿色组是一个 4×1 的矩形,重叠区域用棕色表示。

5135c9d8-597f-11ed-a3b6-dac502259ad0.png

单元格通常由描述单元格覆盖的输入的逻辑值的简写表示。例如,AD表示一个单元格覆盖了A和D为1的 2x2 区域,即上图中编号为 13、9、15、11 的单元格。另一方面,A D(非)表示A为真且D为假(即D(非)为真)的单元格。

网格是环形连接的,这意味着矩形组可以环绕边缘(见图)。最右边的单元格实际上与最左边的单元格“相邻”,因为相应的输入值仅相差一位;同样,最顶端的和最底端的也是如此。因此,A D(非)可以是一个有效术语——它在顶部包括单元格 12 和 8,并环绕到底部以包括单元格 10 和 14——就像B(非) D(非)一样,它包括四个角。

解决方案

函数 f(A, B, C, D) 的 K-map 显示为对应于最小项的彩色矩形。棕色区域是红色 2×2 正方形和绿色 4×1 矩形的重叠部分。f 的倒数的 K-map 显示为灰色矩形,对应于 maxterms

53f2b028-597f-11ed-a3b6-dac502259ad0.png

一旦构建了卡诺图并且相邻的 1 通过矩形和方形框连接起来,就可以通过检查每个框内哪些变量保持相同来找到代数小项。

对于红色分组:

A是相同的,并且在整个框中都等于 1,因此它应该包含在红色最小项的代数表示中。

B不保持相同的状态(它从 1 变为 0),因此应该被排除在外。

C不变。它始终为 0,因此应包括其补码 NOT-C。因此,应包括C。

D发生变化,因此被排除在外。

因此,布尔乘积和表达式中的第一个最小项是A C(非)。

对于绿色分组,A和B保持相同的状态,而C和D改变。B为 0,必须先取反才能包含在内。因此,第二项是A B(非)。请注意,绿色分组与红色分组重叠是可以接受的。

同样,蓝色分组给出了术语BC D((非))。

将每一组的解组合起来:电路的最后的化简结果如下:

54133cda-597f-11ed-a3b6-dac502259ad0.png

还有其他方式,就不展开描述了,可以自行学习。

Problem 72-Kmap1

题目说明

根据卡诺图来实现电路:

5419cc58-597f-11ed-a3b6-dac502259ad0.png 图片来自HDLBits

我们可以尝试最大项之积和最小项之和的形式来完成电路设计。

模块端口声明

moduletop_module(
inputa,
inputb,
inputc,
outputout);

题目解析

按照下图方框化简:

5426af68-597f-11ed-a3b6-dac502259ad0.png

得到:

f(a,b,c)=a+b+c=a'b'c'(摩根定理)

所以可以有两种方式解决。

moduletop_module(
inputlogica,
inputlogicb,
inputlogicc,
outputlogicout
);

assignout=a|b|c;

endmodule

54377d48-597f-11ed-a3b6-dac502259ad0.png

点击Submit,等待一会就能看到下图结果:

544d98da-597f-11ed-a3b6-dac502259ad0.png

注意图中的Ref是参考波形,Yours是你的代码生成的波形,网站会对比这两个波形,一旦这两者不匹配,仿真结果会变红。

这一题就结束了。

Problem 73-Kmap2

题目说明

还是根据卡诺图来设计电路,本题为4个变量。

54719bfe-597f-11ed-a3b6-dac502259ad0.png 图片来自HDLBits

在编写verilog之前,我们可先化简卡诺图。

模块端口声明

moduletop_module(
inputa,b,cin,
outputcout,sum);

题目解析

根据下图先化简卡诺图得到最小和:

547d477e-597f-11ed-a3b6-dac502259ad0.png

f(a,b,c,d) = a'd'+b'c'+ab'd+bcd

moduletop_module(
inputlogica,
inputlogicb,
inputlogicc,
inputlogicd,
outputlogicout
);

assignout=~a&~d|~b&~c|a&~b&d|b&c&d;

endmodule

548bd672-597f-11ed-a3b6-dac502259ad0.png

点击Submit,等待一会就能看到下图结果:

549d14f0-597f-11ed-a3b6-dac502259ad0.png

注意图中的Ref是参考波形,Yours是你的代码生成的波形,网站会对比这两个波形,一旦这两者不匹配,仿真结果会变红。

这一题就结束了。

Problem 74-Kmap3

题目说明

根据卡诺图实现电路:

54bfb4ec-597f-11ed-a3b6-dac502259ad0.png 图片来自HDLBits

还是先化简卡诺图,其中D为don't care值。相当于X。可以一起圈。

模块端口声明

moduletop_module(
inputa,
inputb,
inputc,
inputd,
outputout);

题目解析

可以这样圈,进行化简:

54cc11ba-597f-11ed-a3b6-dac502259ad0.png

PS:

2^n个方格相邻的最小项,可以合并成1项,消去n个变量。

moduletop_module(
inputlogica,
inputlogicb,
inputlogicc,
inputlogicd,
outputlogicout);

assignout=a|~b&c;
endmodule

54ddfb64-597f-11ed-a3b6-dac502259ad0.png

点击Submit,等待一会就能看到下图结果:

5511c232-597f-11ed-a3b6-dac502259ad0.png

注意图中的Ref是参考波形,Yours是你的代码生成的波形,网站会对比这两个波形,一旦这两者不匹配,仿真结果会变红。

这一题就结束了。

Problem 75-Kmap4

题目说明

根据卡诺图实现电路:

55447bfa-597f-11ed-a3b6-dac502259ad0.png 图片来自HDLBits

模块端口声明

moduletop_module(
inputa,
inputb,
inputc,
inputd,
outputout);

题目解析

这题没什么能化简的,就老老实实敲代码吧。

moduletop_module(
inputlogica,
inputlogicb,
inputlogicc,
inputlogicd,
outputlogicout
);

assignout=~a&b&~c&~d|a&~b&~c&~d|~a&~b&~c&d|a&b&~c&d
|~a&b&c&d|a&~b&c&d|~a&~b&c&~d|a&b&c&~d;

endmodule

556efa42-597f-11ed-a3b6-dac502259ad0.png

点击Submit,等待一会就能看到下图结果:

55872ec8-597f-11ed-a3b6-dac502259ad0.png

注意图中的Ref是参考波形,Yours是你的代码生成的波形,网站会对比这两个波形,一旦这两者不匹配,仿真结果会变红。

这一题就结束了。

Problem 76-ece241_2013_q2

题目说明

一个4输入a, b, c, d和一输出的逻辑电路,当输入为2, 7或15时,输出为1, 当输入为0, 1, 4, 5, 6, 9, 10, 13, 或 14 时,输出为0,当输入为3,8,11或12时输出为任意值。举例来说,7对应输入abcd为0,1,1,1.

注意: 该电路的SOP和POS必须均为化简后的最小值

模块端口声明

moduletop_module(
inputa,
inputb,
inputc,
inputd,
outputout_sop,
outputout_pos
);

题目解析

直接根据题目做出答案比较难,所以我们需要先根据题目画出卡诺图:

55ac07ca-597f-11ed-a3b6-dac502259ad0.png

SOP圈法就是圈1,如下:

55bd80d6-597f-11ed-a3b6-dac502259ad0.png

POS圈法就是圈0,如下:

55e97f1a-597f-11ed-a3b6-dac502259ad0.png

moduletop_module(
inputlogica,
inputlogicb,
inputlogicc,
inputlogicd,
outputlogicout_sop,
outputlogicout_pos
);

assignout_sop=c&d|~a&~b&c;
assignout_pos=c&(~a|b)&(~b|~c|d);
endmodule
55f68aa2-597f-11ed-a3b6-dac502259ad0.png

点击Submit,等待一会就能看到下图结果:

5617e648-597f-11ed-a3b6-dac502259ad0.png

注意图中无波形。

这一题就结束了。

Problem 77-m2014 q3

题目说明

还是根据卡诺图实现电路:

56344234-597f-11ed-a3b6-dac502259ad0.png 图片来自HDLBits

模块端口声明

moduletop_module(
input[4:1]x,
outputf);

题目解析

没什么难度,与其他没区别。

moduletop_module(
inputlogic[4:1]x,
outputlogicf);

assignf=(~x[1]&x[3])|(x[1]&x[2]&~x[3]);
endmodule



56458544-597f-11ed-a3b6-dac502259ad0.png

点击Submit,等待一会就能看到下图结果:

5650bd2e-597f-11ed-a3b6-dac502259ad0.png

注意图中无波形。

这一题就结束了。

Problem 78-2012_q1g

题目说明

还是根据卡诺图画出电路:

5670fb2a-597f-11ed-a3b6-dac502259ad0.png 图片来自HDLBits

模块端口声明

moduletop_module(
input[4:1]x,
outputf
);

题目解析

都是同一个道理。

moduletop_module(
inputlogic[4:1]x,
outputlogicf
);

assignf=~x[2]&~x[4]|~x[1]&x[3]|x[2]&x[3]&x[4];
endmodule


569a5f88-597f-11ed-a3b6-dac502259ad0.png

点击Submit,等待一会就能看到下图结果:

56b3ab3c-597f-11ed-a3b6-dac502259ad0.png

注意图中无波形。

这一题就结束了。

Problem 79-ece241_2014_q3

题目说明

根据题目给出的卡诺图,用一个4-1的多路选择器和尽可能多的2-1多路选择器来实现电路,不允许使用其他逻辑门,必须使用ab作为选择器的输入。

56c91684-597f-11ed-a3b6-dac502259ad0.png56d88024-597f-11ed-a3b6-dac502259ad0.png 图片来自HDLBits

模块端口声明

moduletop_module(
inputc,
inputd,
output[3:0]mux_in
);

题目解析

开始题目比较“萌”,因为把东西结合起来了,所以一时难以下手。

这题如果从选择器入手就比较简单了,从图中看到,当ab为固定值,输出是由cd的输入决定。

接下来就是看卡诺图了,从卡诺图中:

当ab == 2'b00时,化简卡诺图,得到mux_in[0] = c+d=cd;

575acac0-597f-11ed-a3b6-dac502259ad0.png

当ab == 2'b01时,化简卡诺图,得到mux_in[1] = 1'b0;

当ab == 2'b10时,化简卡诺图,得到mux_in[2] = d';

当ab == 2'b11时,化简卡诺图,得到mux_in[3] = cd;

576450ea-597f-11ed-a3b6-dac502259ad0.png

此处需注意mux_in[3:0], 一个高位低位的问题,不要搞反了。

moduletop_module(
inputlogicc,
inputlogicd,
outputlogic[3:0]mux_in
);


assignmux_in={(c&d),(~d),1'b0,(c|d)};

endmodule


576f9e5a-597f-11ed-a3b6-dac502259ad0.png

点击Submit,等待一会就能看到下图结果:

5783ed24-597f-11ed-a3b6-dac502259ad0.png

注意图中的Ref是参考波形,Yours是你的代码生成的波形,网站会对比这两个波形,一旦这两者不匹配,仿真结果会变红。

这一题就结束了。

总结

今天的几道题就结束了,对于理解卡诺图化简的人来说就比较简单了,没学过或者忘记的,可以去回顾一下相关知识。整体比较简单,没有复杂的代码,没有复杂的设计思路,主要在于卡诺图的理解。

最后我这边做题的代码也是个人理解使用,有错误欢迎大家批评指正,祝大家学习愉快~

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 卡诺图
    +关注

    关注

    0

    文章

    14

    浏览量

    8649
  • 代码
    +关注

    关注

    30

    文章

    4779

    浏览量

    68517
  • 选择器
    +关注

    关注

    0

    文章

    107

    浏览量

    14534

原文标题:HDLBits: 在线学习 SystemVerilog(十三)-Problem 72-79(卡诺图)

文章出处:【微信号:Open_FPGA,微信公众号:OpenFPGA】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    26.逻辑函数的卡诺化简法 (4)#逻辑函数 #卡诺化简

    电路分析电路设计分析
    电路设计快学
    发布于 :2022年07月27日 10:07:55

    27.逻辑函数的卡诺化简法 (5)#逻辑函数 #卡诺化简

    数字电路电路设计分析
    电路设计快学
    发布于 :2022年07月27日 10:09:29

    28 逻辑函数的卡诺化简法 (6)#逻辑函数 #卡诺化简

    数字电路电路设计分析
    电路设计快学
    发布于 :2022年07月27日 10:10:11

    有逻辑函数化简软件的,卡诺化简软件,请分享吧

    急需 逻辑函数化简实在让我头都大
    发表于 12-26 23:06

    数字逻辑基础卡诺化简

    数字逻辑基础之卡诺化简
    发表于 05-30 21:56

    逻辑函数的卡诺化简

    逻辑函数的卡诺化简
    发表于 01-21 14:06 48次下载

    卡诺化简

    卡诺的构成卡诺是最小项按一定规律排列的方格,每一个最小项占有一个小方格。因为最小项的数目与变量数有关,设变量数为n,则最小项的数目为2
    发表于 09-27 12:34 0次下载

    第五讲 逻辑函数的卡诺化简

    第五讲 逻辑函数的卡诺化简法 2.5 逻辑函数的卡诺化简法2. 5. 1 最小项与
    发表于 03-30 16:03 6056次阅读
    第五讲 逻辑函数的<b class='flag-5'>卡诺</b><b class='flag-5'>图</b><b class='flag-5'>化简</b>法

    逻辑函数的卡诺化简

    逻辑函数的卡诺化简法   由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化
    发表于 04-07 10:11 3.5w次阅读
    逻辑函数的<b class='flag-5'>卡诺</b><b class='flag-5'>图</b><b class='flag-5'>化简</b>法

    卡诺化简法详细介绍

    卡诺化简法详细介绍 一 卡诺的构成卡诺
    发表于 03-08 11:00 18.6w次阅读

    卡诺化简逻辑函数.ppt

    卡诺化简逻辑函数_逻辑代数基础课件内容.ppt。
    发表于 10-29 16:51 0次下载

    卡诺简化方法及简化步骤介绍

    本文开始介绍了卡诺结构特点,其次介绍了卡诺化简函数,最后阐述了卡诺
    发表于 03-01 08:51 5.8w次阅读
    <b class='flag-5'>卡诺</b><b class='flag-5'>图</b>简化方法及简化步骤介绍

    如何画卡诺_卡诺化简约束条件

    本文开始介绍了什么是卡诺卡诺结构特点,其次介绍了卡诺的性质与画
    发表于 03-01 10:37 6w次阅读
    如何画<b class='flag-5'>卡诺</b><b class='flag-5'>图</b>_<b class='flag-5'>卡诺</b><b class='flag-5'>图</b><b class='flag-5'>化简</b>约束条件

    卡诺化简法例题详解

    本文开始介绍了卡诺概念与卡诺结构特点,其次详细介绍了卡诺的性质,最后用例题说明了
    发表于 03-07 16:36 32.9w次阅读
    <b class='flag-5'>卡诺</b><b class='flag-5'>图</b><b class='flag-5'>化简</b>法例题详解

    卡诺化简画圈的原则和步骤

    用代数法化简逻辑函数,需要依赖经验和技巧,有些复杂函数还不容易求得最简形式。卡诺化简法是一种更加系统并有统一规则可循的逻辑函数化简法。
    发表于 03-06 13:58 13.9w次阅读
    <b class='flag-5'>卡诺</b><b class='flag-5'>图</b><b class='flag-5'>化简</b>画圈的原则和步骤