1 如何有效构建固体电解质的高亲锂界面?-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何有效构建固体电解质的高亲锂界面?

清新电源 来源:能源学人 作者:Energist 2022-11-24 09:23 次阅读

【研究背景】

固态电池由于高比能和高安全性被认为是下一代锂离子电池的候选者。固态电解质是固态电池的核心部件,立方石榴石型Li7La3Zr2O12(LLZO)固态电解质(SSE)因具有较高的离子电导率、较宽的电化学窗口,同时对锂金属具有良好的化学和电化学稳定性等优势成为最有前景的电解质之一。然而,石榴石电解质和锂金属之间的固-固接触,导致界面阻抗增大,诱导锂枝晶的形成。

此外,石榴石电解质暴露在空气中时,其表面形成的Li2CO3/LiOH污染物降低了电解质和锂金属的浸润,进一步导致界面阻抗增加和锂枝晶生长加剧。目前,仅通过去除石榴石表面的污染物,组装的固态电池工作电流密度较低,不能满足实际使用需求,同时,处理后的电解质表面可能会受到二次污染。因此,将石榴石电解质表面的Li2CO3/LiOH污染物转化为保护性的亲锂修饰层,是解决石榴石界面问题的关键。

【工作简介】

近日,厦门大学杨勇教授和龚正良教授课题组等人设计了一种通用的改性策略,利用LiPO2F2与Li2CO3/LiOH的化学反应,将Li6.4La3Zr1.4Ta0.6O12(LLZTO)表面的污染物转化为富含LiF和Li2PO3F的亲锂修饰层。该修饰层不仅有利于LLZTO和Li之间的界面接触,同时有助于降低空气对LLZTO表面的侵蚀。通过界面改性,Li|LiF&Li2PO3F-LLZTO|Li对称电池表现出5.1 Ω cm-2的低界面阻抗和优异的长循环稳定性,在0.6 mA cm-2下稳定循环超过1500小时,1.0 mA cm-2下超过70h。

此外,LiCoO2|LiF&Li2PO3F-LLZTO|Li半固态电池在0.1 C时表现出192 mAh g−1的高初始比容量,并且在4.5 V的高截止电压下,0.5C循环1000次后的容量保持率仍然超过76%。我们的工作验证了高压正极材料在改性的石榴石固态电池中应用的可行性,为解决石榴石界面问题提供了一种简单实用的策略。

42434534-6b83-11ed-8abf-dac502259ad0.png

图1 LiPO2F2改善LLZTO界面的机理图和全电池性能。

【内容表述】

425d7b20-6b83-11ed-8abf-dac502259ad0.png

图2 LiPO2F2处理前后石榴石电解质的表征。(a)新鲜的LLZTO和LPF-LLZTO的电化学阻抗图。(b) LLZTO、Air-LLZTO和LPF-LLZTO的拉曼光谱和(c) FTIR光谱。(d-i)经过LiPO2F2处理的LLZTO的表面SEM和相应的La、Ta、F、P、Zr的EDS-maping图像。

为了更好的显示LiPO2F2清除石榴石电解质污染物的效果,将新鲜的电解质(LLZTO)放置到空气中2天后(Air-LLZTO),进行表面处理。如图2a所示,与新鲜的电解质(LLZTO)相比,经过LiPO2F2处理的石榴石电解质(LPF-LLZTO)离子电导率并没有明显变化,为7.5×10-4 S cm-1。采用傅里叶变换红外光谱(FTIR)和拉曼光谱检测了处理前后的石榴石电解质表面成分的变化。

如图2b和2c所示,在空气中放置2天后的Air-LLZTO,FTIR(1090 cm-1)和拉曼光谱(863 cm-1)结果中均能明显观察到CO32−的特征峰,证实了LLZTO在空气中不稳定性,表面会产生Li2CO3。经过LiPO2F2处理后,电解质表面的CO32−信号消失,并形成Li2PO3F。此外,EDS的结果(图2d-i)显示LPF-LLZTO表面富含P和F元素,表明这种修饰策略可以有效转化石榴石表面的污染物。

427894d2-6b83-11ed-8abf-dac502259ad0.png

图3循环前Air-LLZTO和LPF-LLZTO的C 1s (a)、F 1s (b)、P 2p (C)和Zr 3d (d)的XPS谱。

为了进一步确认石榴石表面的成分变化,采用X射线光电子能谱(XPS)检测LiPO2F2处理前后的电解质。如图3a所示,Air-LLZTO的C 1s光谱中可以清楚地观察到290.0 eV处的强Li2CO3信号,这是由于LLZTO与空气中的H2O和CO2反应造成的。LiPO2F2处理后,LPF-LLZTO的Li2CO3信号消失,生成LiF和Li2PO3F,对应于F 1s中的685.0 eV和P 2p中的134.3 eV峰(图3b和3c),进一步证实了Li2CO3与LiPO2F2反应形成LiF和Li2PO3F化合物。根据上述结果,通过LiPO2F2和Li2CO3/LiOH的原位转化反应,LLZTO表面形成了富含LiF和Li2PO3F的修饰层。

4285021c-6b83-11ed-8abf-dac502259ad0.png

图4 反应1和反应2的吉布斯自由能随温度的变化。

428f86ba-6b83-11ed-8abf-dac502259ad0.png

图5 锂/石榴石界面行为的比较。(a)Li/Li2CO3、(b)Li/LiF 和(c)Li/Li2PO3F 界面的结构、粘附功(Wad)和接触角(θ)。(d)Li/Air-LLZTO 和(e)Li/LPF-LLZTO 界面处的 SEM 图像。

采用密度泛函理论(DFT)计算了0-200 °C范围内,LiPO2F2与Li2CO3/LiOH反应的吉布斯自由能(∆G)随温度的变化,反应方程式如下:

反应 1:LiPO2F2 + 2LiOH → Li2PO3F + LiF + H2O

反应 2:LiPO2F2 + Li2CO3 → Li2PO3F + LiF + CO2

从图4可以看出,室温下,LLZTO表面的LiOH和Li2CO3污染物在LiPO2F2处理过程中都可以自发转化为LiF和Li2PO3F。

另外,DFT计算结果显示Li/Li2CO3的界面粘附功(Wad)为0.09 J m-2,接触角为142°。表明LLZTO表面存在Li2CO3表面污染物会导致LLZO/Li接触不良,界面阻抗变大,Li沉积/剥离不均匀。相比之下,LiPO2F2和Li2CO3原位转化反应形成的Li/LiF和Li/Li2PO3F的界面接触角分别为38°和16°,明显低于Li/Li2CO3,其界面润湿性更好。此外,SEM结果显示,受Li2CO3污染物的影响,Li/Air-LLZTO界面接触不佳,产生了缝隙(图5d),而用LiPO2F2处理后的Li/LPF-LLZTO界面接触良好(图5e)。

得益于紧密的界面接触,Li|LPF-LLZTO|Li电池的界面阻抗为5.1 Ω cm-2(图6a)。临界电流密度(CCD)是电池在短路前能承受的最大电流,反映了抑制锂枝晶生长的能力。如图6b,黑线所示,基于LLZTO的对称电池在电流密度为0.6 mA cm-2时,极化电压突然下降,表明电池出现短路。而LiPO2F2处理后的Li|LPF-LLZTO|Li电池,CCD增加到1.2 mA cm-2(图6b,红线),证实了其在抑制锂枝晶生长上的有效性。

为了进一步验证锂/石榴石的界面稳定性,对组装的对称电池在室温下进行长循环测试。如图6c所示,Li|LLZTO|Li电池的极化电压在电流密度为0.5 mA cm-2的循环过程中逐渐增加,并在60小时后突然下降。相比之下,Li|LPF-LLZTO|Li电池在0.6 mA cm-2的电流密度下,可以稳定循环超过1500h(图6d)。同样,如图6e所示,该电池在0.8 mA cm-2的电流密度下可循环180h。令人印象深刻的是,当电流密度增加到1.0 mA cm-2时,基于LPF-LLZTO的对称电池也稳定运行了70 h(图6f),证明了Li/LPF-LLZTO界面在高电流密度下的循环稳定性。

42a041c6-6b83-11ed-8abf-dac502259ad0.png

图6 (a) Li|LLZTO|Li和Li|LPF-LLZTO|Li的EIS曲线。(b) 通过从0.2到1.4 mA cm-2的恒电流循环,以0.2 mA cm-2的间隔增加电流来测量临界电流密度(CCD)。(c) 在0.5 mA cm-2下,Li|LLZTO|Li电池的沉积/剥离行为。(d-f) LPF-LLZTO对称电池在电流密度为0.6、0.8和1.0 mA cm-2时的恒电流循环性能。

42acbc80-6b83-11ed-8abf-dac502259ad0.png

图7 室温条件下半固态全电池的电化学特性。(a) 电池的示意图。(b-c) LiCoO2|LPF-LLZTO|Li的倍率性能。(d) LiCoO2|LPF-LLZTO|Li在0.5 C时的循环性能(1 C = 180 mAh g-1)。(e) NCM811|LPF-LLZTO|Li在0.5C下选择的充放电曲线和 (f) 长循环性能(1C=180 mAh g-1)。

为了证明LiPO2F2改性后的石榴石电解质在全电池中的应用可行性,分别采用高压LiCoO2和三元NCM811作为正极组装半固态锂金属电池(图7a)。在电池组装过程中,向正极侧加入少量电解液保持界面接触。如图7b-d所示,LiCoO2|LPF-LLZTO|Li电池在3.0V-4.5V电压范围内循环,表现出优异的循环稳定性和倍率性能。即使在0.5C和30℃的条件下循环1000圈后,LiCoO2|LPF-LLZTO|Li电池的容量保持率仍高达76%。

同样,在3.0-4.2V范围内循环的NCM811|LPF-LLZTO|Li全电池也表现出良好的循环稳定性,其初始放电容量高达175 mAh g-1(图7e),并在0.5C条件下循环400次后的容量保持率为82%,库仑效率高达99.9%(图7f)。上述两种电池都表明,LiPO2F2修饰的界面在全电池体系中也具有优异的稳定性,证实了我们的策略在高能量电池中的应用可行性。

【结论】

本文提出了一种通用的改性策略,利用LiPO2F2与Li2CO3/LiOH的化学反应,将Li6.4La3Zr1.4Ta0.6O12(LLZTO)表面的污染物转化为富含LiF和Li2PO3F的亲锂修饰层。该修饰层不仅有利于LLZTO和Li之间的界面接触,同时有助于降低空气对LLZTO表面的侵蚀。界面改性后,基于这种固态电解质的电池表现出优异的电化学性能。该工作验证了高压正极材料在改性的石榴石固态电池中应用的可行性,为解决石榴石界面问题提供了一种简单实用的策略。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FTIR
    +关注

    关注

    0

    文章

    33

    浏览量

    9016
  • 傅里叶变换
    +关注

    关注

    6

    文章

    441

    浏览量

    42592
  • 固态电池
    +关注

    关注

    10

    文章

    695

    浏览量

    27777
  • 固体电解质
    +关注

    关注

    0

    文章

    46

    浏览量

    8389

原文标题:如何有效构建固体电解质的高亲锂界面?厦大杨勇&龚正良教授AFM教你“化腐朽为神奇”

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备固体电解质

    对其广泛应用造成严重限制。在这种情况下,采用固体电解质的全固态锂电池为提高安全性提供了巨大的潜力。在不同的粒子中,硫化物的离子导电性是非常好的。此外,硫化物SES还具有机械健壮性等优点,有可能稳定金属阳极,从而使
    的头像 发表于 12-04 10:05 176次阅读
    北京科技大学范丽珍教授团队In和F共掺杂LPSCl制备<b class='flag-5'>固体</b><b class='flag-5'>电解质</b>

    通过电荷分离型共价有机框架实现对金属电池固态电解质界面的精准调控

    (-3.04 V vs SHE),被认为是次世代电池的最优选择。然而,金属负极的实际应用面临诸多挑战,其中最关键的问题是枝晶的生长和副反应的发生。这些问题不仅会导致电池寿命急剧下降,还会引发严重的安全隐患,如短路和热失控。 固态电解
    的头像 发表于 11-27 10:02 287次阅读
    通过电荷分离型共价有机框架实现对<b class='flag-5'>锂</b>金属电池固态<b class='flag-5'>电解质</b><b class='flag-5'>界面</b>的精准调控

    全固态金属电池的阳极夹层设计

    金属电解质的消耗。锂离子的不均匀沉积/剥离导致枝晶的生长和电池安全风险,阻碍了金属电池(LMB)的进一步开发和商业应用。由于对机理的了解不够,
    的头像 发表于 10-31 13:45 198次阅读
    全固态<b class='flag-5'>锂</b>金属电池的<b class='flag-5'>锂</b>阳极夹层设计

    固态电池中复合阳极上固体电解质界面的调控

    采用固体聚合物电解质(SPE)的固态金属电池(SSLMB)具有更高的安全性和能量密度,在下一代储能领域具有很大的应用前景。
    的头像 发表于 10-29 16:53 383次阅读
    固态电池中复合<b class='flag-5'>锂</b>阳极上<b class='flag-5'>固体</b><b class='flag-5'>电解质</b><b class='flag-5'>界面</b>的调控

    无极电容器有电解质吗,无极电容器电解质怎么测

    无极电容器通常存在电解质电解质在无极电容器中起着重要作用,它可以增加电容器的电容量和稳定性。然而,电解质也可能带来一些问题,如漏电和寿命问题。
    的头像 发表于 10-01 16:45 370次阅读

    具有密集交联结构的明胶基水凝胶电解质(ODGelMA)

    目前,开发一种能够成功实现兼具机械强度、离子电导率和界面适应性的综合水凝胶电解质基质仍然具有挑战性。
    的头像 发表于 05-22 09:17 726次阅读
    具有密集交联结构的明胶基水凝胶<b class='flag-5'>电解质</b>(ODGelMA)

    铌酸调控固态电解质电场结构促进锂离子高效传输!

    聚合物基固态电解质得益于其易加工性,最有希望应用于下一代固态金属电池。
    的头像 发表于 05-09 10:37 749次阅读
    铌酸<b class='flag-5'>锂</b>调控固态<b class='flag-5'>电解质</b>电场结构促进锂离子高效传输!

    最新Nature Energy开发新型稀释剂助推金属电池实用化!

    众所知周,通过调控电解液来稳定固体电解质间相(SEI),对于延长金属电池循环寿命至关重要。
    的头像 发表于 05-07 09:10 809次阅读
    最新Nature Energy开发新型稀释剂助推<b class='flag-5'>锂</b>金属电池实用化!

    请问聚合物电解质是如何进行离子传导的呢?

    在目前的聚合物电解质体系中,高分子聚合物在室温下都有明显的结晶性,这也是室温下固态聚合物电解质的电导率远远低于液态电解质的原因。
    的头像 发表于 03-15 14:11 1197次阅读
    请问聚合物<b class='flag-5'>电解质</b>是如何进行离子传导的呢?

    不同类型的电池的电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池的电解质由液体,胶凝和干燥形式的可溶性盐,酸或其他碱组成。电解质也来自
    的头像 发表于 02-27 17:42 1539次阅读

    新型固体电解质材料可提高电池安全性和能量容量

    利物浦大学的研究人员公布了一种新型固体电解质材料,这种材料能够以与液体电解质相同的速度传导锂离子,这是一项可能重塑电池技术格局的重大突破。
    的头像 发表于 02-19 16:16 883次阅读

    介电填料诱导杂化界面助力负载金属电池

    采用高安全和电化学稳定的聚合物固态电解质取代有机电解液,有望解决液态金属电池的产气和热失控等问题。
    的头像 发表于 01-22 09:56 1091次阅读
    介电填料诱导杂化<b class='flag-5'>界面</b>助力<b class='flag-5'>高</b>负载<b class='flag-5'>锂</b>金属电池

    关于固态电解质的基础知识

    固态电解质在室温条件下要求具有良好的离子电导率,目前所采用的简单有效的方法是元素替换和元素掺杂。
    的头像 发表于 01-19 14:58 1.9w次阅读
    关于固态<b class='flag-5'>电解质</b>的基础知识

    全固态金属电池负极界面设计

    全固态金属电池有望应用于电动汽车上。相比于传统液态电解液,固态电解质不易燃,机械强度等优点。
    的头像 发表于 01-16 10:14 803次阅读
    全固态<b class='flag-5'>锂</b>金属电池负极<b class='flag-5'>界面</b>设计

    人工界面修饰助力高性能金属电池的最新研究进展与展望!

    金属负极的能量密度很高,当与电压正极结合时,金属电池可以实现接近 500 Wh kg−1 的能量密度。然而,金属负极并不稳定,会与电解质
    的头像 发表于 01-02 09:08 1416次阅读
    人工<b class='flag-5'>界面</b>修饰助力高性能<b class='flag-5'>锂</b>金属电池的最新研究进展与展望!