【工业相机的选择要点】
1.视野范围、光学放大倍数及期望的工作距离:在选择镜头时,我们会选择比被测物体视野稍大一点的镜头,有利于运动控制。
2.景深要求:对于对景深有要求的项目,尽可能使用小光圈;在选择放大倍率的镜头时,在项目许可下尽可能选用低倍率镜头;如果项目要求比较苛刻时,倾向选择高景深的尖端镜头。
3.芯片大小和相机接口:例如2/3镜头支持最大的工业相机耙面为2/3,它是不能支持1英寸以上的工业相机。
4.注意与光源的配合,选配合适的镜头。
5.可安装空间:在方案可选择情况下,让客户更改设备尺寸是不现实的。
机器视觉检测系统是采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来收取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。
【机器视觉特点】
⒈摄像机的拍照速度自动与被测物的速度相匹配,拍摄到理想的图像;
⒉零件的尺寸范围为2.4mm到12mm,厚度可以不同;
⒊系统根据操作者选择不同尺寸的工件,调用相应视觉程序进行尺寸检测,并输出结果;
⒋针对不同尺寸的零件,排序装置和输送装置可以精确调整料道的宽度,使零件在固定路径上运动并进行视觉检测;
⒌机器视觉系统分辨率达到2448×2048,动态检测精度可以达到0.02mm;
⒍废品漏检率为0;
⒎本系统可通过显示图像监视检测过程,也可通过界面显示的检测数据动态查看检测结果;
⒏具有对错误工件及时准确发出剔除控制信号、剔除废品的功能;
⒐系统能够自检其主要设备的状态是否正常,配有状态指示灯;同时能够设置系统维护人员、使用人员不同的操作权限;
⒑实时显示检测画面,中文界面,可以浏览几次不合格品的图像,具有能够存储和实时察看错误工件图像的功能;
⒒能生成错误结果信息文件,包含对应的错误图像,并能打印输出。
【机器视觉的应用领域】
1.识别
2.标准一维码、二维码的解码
3.光学字符识别(OCR)和确认(OCV)
4.检测
5.色彩和瑕疵检测
6.零件或部件的有无检测
7.目标位置和方向检测和测量
8.尺寸和容量检测
9.预设标记的测量,如孔位到孔位的距离
10.机械手引导
11.输出空间坐标引导机械手精确定位
视觉是人类观察和认知世界的重要手段。随着信息技术的发展,人类逐渐把这种技能赋予计算机、机器人或者其他智能机器,这就是我们今天所要提到的机器视觉技术。
目前机器视觉技术已经实现了产品化、实用化,镜头、高速相机、光源、图像软件、图像采集卡、视觉处理器等相关产品功能日益完善。机器视觉技术在信息化时代正扮演着越来越重要的角色。
与计算机视觉相比,机器视觉偏重于计算机视觉技术工程化,能够自动获取和分析特定的图像,对准确度和处理速度要求都比较高,一般而言,计算机视觉多用来识别“人”,而机器视觉则多用来识别“物”。
具体来讲,计算机视觉应用的场景相对复杂,要识别的物体类型也多,形状不规则、规律性不强,有时甚至很难用客观量作为是被的依据,比如识别年龄、性别,对于光线、距离、角度等条件要求较低;而对准确度和处理速度要求都比较高,一般机器视觉的分辨率远高于计算机视觉,而且往往要求实时,处理速度非常关键。
-
CCD
+关注
关注
32文章
879浏览量
142219 -
机器视觉
+关注
关注
161文章
4369浏览量
120277 -
人工检测
+关注
关注
0文章
9浏览量
10704
发布评论请先 登录
相关推荐
评论