1 如何完成机械臂的运动控制模块-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何完成机械臂的运动控制模块

大象机器人科技 来源:大象机器人科技 作者:大象机器人科技 2023-02-10 16:07 次阅读

使用一个桌面型的六轴机械臂,在机械臂的末端安装一个摄像头,来进行人脸识别和跟踪的一个功能。该功能分为两个模块,一个是人脸识别模块,另一个是机械臂的运动控制模块

在前文有介绍到怎么控制机械臂的基本运动和人脸识别是如何实现的,在这里就不再复述了,本篇的内容主要是介绍是如何完成运动控制模块的。

使用到的设备

mechArm 270 -Pi ,适配的摄像头

poYBAGPl-0GABAlBAAFYH_5d57w716.jpg

设备的详情可以了解前文

机械臂的运动控制模块

接下来介绍运动控制的模块。

控制模块,常见的运动控制输入的是笛卡尔空间的绝对位置,想要获得绝对位置需要做相机和手臂的手眼标定算法,这个涉及的未知参数就有十几个了,我们略过了这个步骤,选择使用相对位移做运动控制,这就需要设计一套采样运动机制,确保一次控制周期能完整地获得人脸的偏移并实施跟踪。

所以我想要整个功能能够快速呈现出来,就没有选择用手眼标定的算法来处理相机和手臂的关系。因为手眼标定的工作量是相当庞大的。

下面的代码是:从人脸识别算法中得到的信息来获取参数

code


_, img = cap.read()
# Converted to grey scale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Detecting faces
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
# Drawing the outline
for (x, y, w, h) in faces:
if w > 200 or w < 80: 
#Limit the recognition width to between 80 and 200 pixels
continue
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 3)
center_x = (x+w-x)//2+x
center_y = (y+h-y)//2+y
size_face = w


将获取到的 center_x,center_y ,size_face这几个变量用来计算位置。

下面是处理数据来控制运动的算法的代码


run_num = 20 #Control cycle of 20 frames
if save_state == False:
# Save a start point (save_x, save_y)
save_x = center_x
save_y = center_y
save_z = size_face
origin_angles = mc.get_angles()
print("origin point = ", save_x, save_y, origin_angles)
time.sleep(2);
current_coords = mc.get_coords()
save_state = TRUE
else:
if run_count > run_num: # Limit the control period to 20 frames
run_count = 0
# Recording relative offsets
error_x = center_x - save_x
error_y = center_y - save_y
error_z = size_face - save_z

# Pixel differences are converted into actual offsets, which can be scaled and oriented
trace_1 = -error_x * 0.15
trace_z = -error_y * 0.5
trace_x = -error_z * 2.0

# x/z axis offset, note that this is open loop control
current_coords[2] += trace_z
current_coords[0] += trace_x

#Restricting the Cartesian space xz range
if current_coords[0] < 70:
current_coords[0] = 70

if current_coords[0] > 150:
current_coords[0] = 150

if current_coords[2] < 220:
current_coords[2] = 220

if current_coords[2] > 280:
current_coords[2] = 280

# Inverse kinematic solutions
x = current_coords[0]
z = current_coords[2]
# print(x, z)

L1 = 100;
L3 = 96.5194;
x = x - 56.5;
z = z - 114;

cos_af = (L1*L1 + L3*L3 - (x*x + z*z))/(2*L1*L3);
cos_beta = (L1*L1 - L3*L3 + (x*x + z*z))/(2*L1*math.sqrt((x*x + z*z)));
reset = False
# The solution is only applicable to some poses, so there may be no solution
if abs(cos_af) > 1:
reset = True
if reset == True:
current_coords[2] -= trace_z
current_coords[0] -= trace_x
print("err = ",cos_af)
continue

af = math.acos(cos_af);
beta = math.acos(cos_beta);

theta2 = -(beta + math.atan(z/x) - math.pi/2);
theta3 = math.pi/2 - (af - math.atan(10/96));
theta5 = -theta3 - theta2;
cof = 57.295 #Curvature to angle

move_juge = False
# Limits the distance travelled, where trace_1 joint is in ° and trace_x/z is in mm
if abs(trace_1) > 1 and abs(trace_1) < 15:
move_juge = True
if abs(trace_z) > 10 and abs(trace_z) < 50:
move_juge = True
if abs(trace_x) > 25 and abs(trace_x) < 80:
move_juge = True

if (move_juge == True):
print("trace = ", trace_1, trace_z, trace_x)
origin_angles[0] += trace_1
origin_angles[1] = theta2*cof
origin_angles[2] = theta3*cof
origin_angles[4] = theta5*cof
mc.send_angles(origin_angles, 70)
else:
#Due to the open-loop control, if no displacement occurs the current coordinate value needs to be restored
current_coords[2] -= trace_z
current_coords[0] -= trace_x
else:
# 10 frames set aside for updating the camera coordinates at the end of the motion
if run_count < 10:
save_x = center_x
save_y = center_y
save_z = size_face
run_count += 1

在算法模块中,获得相对位移后如何进行手臂移动,为了确保运动效果我们并没有直接采用mecharm提供的坐标运动接口,而是在python中添加了逆运动学部分,针对应用场景计算了特定姿态下的机械臂逆解,将坐标运动转化成了角度运动,避免了奇异点等影响笛卡尔空间运动的因素。结合上人脸识别部分的代码,整个项目就算是完成了。

正常来说人脸识别会对算力有比较高的要求,它的算法机制是针对相邻像素做重复计算从而增加识别精度,我们使用的mechArm 270-Pi它的主控是以树莓派4B 为处理器,来进行人脸识别的算力处理。

树莓派的算力是400MHZ。我们用的树莓派算力不足所以简化了这个过程,把识别机制改成了只算几次的模糊识别,在我们应用的时候就需要背景简单一些。

总结

这个人脸识别和机械臂跟踪项目到目前就算是做完了。

总结项目一些关键信息:

1 在对于低算力的情况下,设定简单的使用场景,实现流畅的效果

2 将复杂的手眼标定算法换成选择相对位置移动,使用采样运动机制,确保每一控制周期能完整的获得人脸的偏移并跟踪

3 在python中添加了逆运动学部分,针对应用场景计算了特定姿态下的机械臂逆解,将坐标运动转化成了角度运动,避免了奇异点等影响笛卡尔空间运动。

项目一些不足的地方:

在使用的场景有一定的要求,需要干净的背景才能运行成功。(通过固定的场景,简化了很多参数)

前面也有提到,树莓派的算力是不足的,更换其他控制主板的,运行起来会更加流畅,例如用jetsonnano (600MHZ),高性能图像处理的电脑

另外就是运动控制模块,因为没有做手眼标定所以只能用相对位移,控制分为“采样阶段”“移动阶段”,目前尽量要求采样的时候镜头是静止的,但实际上比较难保证镜头静止,就会出现在采样的时候镜头同时还在运动,导致读到的坐标会有偏差。

最后,在这里特别感谢大象机器人在项目的开发时提供的帮助,能够让项目完成。这次使用的mechArm是一款中心对称结构的机械臂,在关节运动上有所限制,如果将程序运用在活动范围更加灵活的mycobot上可能是不一样情况。

如果你对项目有啥想要了解更多的地方请在下方给我留言。

审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    211

    文章

    28379

    浏览量

    206908
  • python
    +关注

    关注

    56

    文章

    4792

    浏览量

    84624
  • 机械臂
    +关注

    关注

    12

    文章

    513

    浏览量

    24552
收藏 人收藏

    评论

    相关推荐

    通过检测手臂运动控制机械

    /id_XNTkxNjgwMDg=.html这里有一个我搜到的 做得挺好的,但是我不知道怎么实现。首先要求是用PIC单片机来做检测手臂运动控制机械。就是手臂
    发表于 12-23 11:48

    基于LabVIEW和SolidWorks改进机械的设计流程

    和移动残骸、检查车辆车盘和完成大部分现在使用的机器人所无法完成的其他任务。这就是约束区域机器人手臂(CARMA)开发。 CARMA机械成品  将这个项目作为提高设计流程效率并大幅扩展
    发表于 02-12 15:56

    基于LabVIEW的四自由度机械运动控制系统设计

    实行位置伺服和编码器反馈,对直流电机利用线性电位器反馈电压的方式实现了角度的反馈控制。借助LabVIEW8.2 的强大功能,我们得以在短时间内完成控制系统的开发,同时保证了机械
    发表于 02-12 16:10

    采用LabVIEW实现四自由度机械运动控制系统设计

    LabVIEW8.2的强大功能,我们得以在短时间内完成控制系统的开发,同时保证了机械运动精度与负载能力。四自由度
    发表于 05-06 09:26

    STM32与树莓派交互控制机械

    (并不)常见的五自由度机械。尽管商家称它为六自由度。这里使用STM32F407VGT6的6路PWM输出通道来控制6个舵机的运动,树莓派(上位机)通过USB转TTL
    发表于 07-01 10:24

    基于单片机的三轴机械控制怎么实现

    文章目录三轴机械控制原理三轴机械接线三轴机械
    发表于 12-13 07:14

    机械的相关资料分享

    [四]机械手臂的逆运动学解正运动学分析是已知每个关节的姿态的前提下,解算出末端执行器的姿态。而逆运动学研究的问题是,要求控制末端执行器到达某
    发表于 01-20 06:46

    基于STC8H1K28双轴机械驱动模块设计

    、肩关节以及上下移动关节的机械平台可以完成这项设计。在基于STC8H1K28双轴机械驱动模块 给出了对肩关节、肘关节上的步进电机、角度传感
    发表于 02-18 06:01

    机械控制学习

    机械向前运动1cm,就是运动1cm)。这种控制在涉及到接触作业时就会产生麻烦,因为现实环境是充满各种误差的,位置上很小的误差,经过大刚度的
    发表于 02-23 07:49

    六自由度机械运动规划

    为了使六自由度机械完成特定的动作, 需要设计计算相应的指令序列. 首先计算了机械位姿与指尖位置之间的关系公式, 然后针对
    发表于 02-17 16:55 193次下载
    六自由度<b class='flag-5'>机械</b><b class='flag-5'>臂</b>的<b class='flag-5'>运动</b>规划

    机械运动轨迹优化方法

    机械运动轨迹是指通过给定的路径的起点与终点,以及机构本身或者机构运行所存在的约束条件,求出每个关节的位移S,速度v,加速a的完整过程。 文中采用笛卡尔空间的网弧插值法使得机械
    发表于 11-03 10:26 10次下载
    双<b class='flag-5'>机械</b><b class='flag-5'>臂</b><b class='flag-5'>运动</b>轨迹优化方法

    DSP的机械预测控制

    针对机械的实时控制问题,基于约束预测控制,提出了一种机械实时
    发表于 03-26 09:33 1次下载
    DSP的<b class='flag-5'>机械</b><b class='flag-5'>臂</b>预测<b class='flag-5'>控制</b>

    使用Zio模块控制机械(第4部分)

    德赢Vwin官网 网站提供《使用Zio模块控制机械(第4部分).zip》资料免费下载
    发表于 12-30 10:15 0次下载
    使用Zio<b class='flag-5'>模块</b><b class='flag-5'>控制</b><b class='flag-5'>机械</b><b class='flag-5'>臂</b>(第4部分)

    实现使用语音控制机械运动

    使用语音控制myCobot机械运动
    的头像 发表于 03-17 18:13 1265次阅读
    实现使用语音<b class='flag-5'>控制</b><b class='flag-5'>机械</b><b class='flag-5'>臂</b><b class='flag-5'>运动</b>

    【开源获奖案例】四轴机械控制系统

    ——来自迪文开发者论坛本期为大家推送迪文开发者论坛获奖开源案例——四轴机械控制系统。工程师采用T5L智能屏,基于DGUS软件“旋转指示”控件实现机械
    的头像 发表于 12-23 08:13 1251次阅读
    【开源获奖案例】四轴<b class='flag-5'>机械</b><b class='flag-5'>臂</b><b class='flag-5'>控制</b>系统