0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何理解二分查找算法

jf_78858299 来源:labuladong 作者:labuladong 2023-04-19 11:10 次阅读

先给大家讲个笑话乐呵一下:

有一天阿东到图书馆借了 N 本书,出图书馆的时候,警报响了,于是保安把阿东拦下,要检查一下哪本书没有登记出借。阿东正准备把每一本书在报警器下过一下,以找出引发警报的书,但是保安露出不屑的眼神:你连二分查找都不会吗?于是保安把书分成两堆,让第一堆过一下报警器,报警器响;于是再把这堆书分成两堆…… 最终,检测了 logN 次之后,保安成功的找到了那本引起警报的书,露出了得意和嘲讽的笑容。于是阿东背着剩下的书走了。

从此,图书馆丢了 N - 1 本书。

二分查找真的很简单吗?并不简单。看看 Knuth 大佬(发明 KMP算法的那位)怎么说的:

Although the basicidea of binary search is comparatively straightforward, the detailscanbe surprisingly tricky...

这句话可以这样理解:思路很简单,细节是魔鬼。

本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。

而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。

零、二分查找框架

intbinarySearch(int[] nums,inttarget) {intleft =0, right = ...;while(...) {intmid = (right + left) /2;if(nums[mid] ==target) { ... }elseif(nums[mid] <target) { left = ... }elseif(nums[mid] >target) { right = ... } }return...; }

分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。

其中...标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。

另外声明一下,计算 mid 时需要技巧防止溢出,可以 [参见前文],本文暂时忽略这个问题。

一、寻找一个数(基本的二分搜索)

这个场景是最简单的,可能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

intbinarySearch(int[] nums,inttarget){intleft =0;intright = nums.length -1;// 注意while(left <= right) {// 注意intmid = (right + left) /2;if(nums[mid] == target)returnmid;elseif(nums[mid] < target) left = mid +1;// 注意elseif(nums[mid] > target) right = mid -1;// 注意}return-1; }

1. 为什么 while 循环的条件中是 <=,而不是 < ?

答:因为初始化 right 的赋值是 nums.length - 1,即最后一个元素的索引,而不是 nums.length。

这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right],后者相当于左闭右开区间 [left, right),因为索引大小为 nums.length 是越界的。

我们这个算法中使用的是 [left, right] 两端都闭的区间。这个区间就是每次进行搜索的区间,我们不妨称为「搜索区间」

什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:

if(nums[mid] == target)returnmid;

但如果没找到,就需要 while 循环终止,然后返回 -1。那 while 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。

while(left <= right)的终止条件是 left == right + 1,写成区间的形式就是 [right + 1, right],或者带个具体的数字进去 [3, 2],可见这时候搜索区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 while 循环终止是正确的,直接返回 -1 即可。

while(left < right)的终止条件是 left == right,写成区间的形式就是 [right, right],或者带个具体的数字进去 [2, 2],这时候搜索区间非空,还有一个数 2,但此时 while 循环终止了。也就是说这区间 [2, 2] 被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就可能出现错误。

当然,如果你非要用 while(left < right) 也可以,我们已经知道了出错的原因,就打个补丁好了:

//...while(left < right) {// ...}returnnums[left] == target ? left : -1;

2. 为什么 left = mid + 1,right = mid - 1?我看有的代码是 right = mid 或者 left = mid,没有这些加加减减,到底怎么回事,怎么判断?

答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。

刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,如何确定下一步的搜索区间呢?

当然是去搜索 [left, mid - 1] 或者 [mid + 1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。

3. 此算法有什么缺陷?

答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。

比如说给你有序数组 nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。

这样的需求很常见。你也许会说,找到一个 target 索引,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。

我们后续的算法就来讨论这两种二分查找的算法。

二、寻找左侧边界的二分搜索

直接看代码,其中的标记是需要注意的细节:

intleft_bound(int[] nums,inttarget) {if(nums.length ==0)return-1;intleft =0;intright = nums.length; // 注意while(left < right) { // 注意intmid = (left + right) /2;if(nums[mid] ==target) { right = mid; }elseif(nums[mid] <target) { left = mid +1; }elseif(nums[mid] >target) { right = mid; // 注意 } }returnleft; }

1.为什么 while(left < right) 而不是 <= ?

答:用相同的方法分析,因为初始化 right = nums.length 而不是 nums.length - 1 。因此每次循环的「搜索区间」是 [left, right) 左闭右开。

while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 恰巧为空,所以可以正确终止。

2.为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:

图片

对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个。

比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。如果 target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。

综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1:

while(left < right) {//...}// target 比所有数都大if(left == nums.length)return-1;// 类似之前算法的处理方式returnnums[left] == target ? left : -1;

3.为什么 left = mid + 1,right = mid ?和之前的算法不一样?

答:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该去掉 mid 分割成两个区间,即 [left, mid) 或 [mid + 1, right)。

4.为什么该算法能够搜索左侧边界?

答:关键在于对于 nums[mid] == target 这种情况的处理:

if(nums[mid] == target) right =mid;

可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。

5.为什么返回 left 而不是 right?

答:都是一样的,因为 while 终止的条件是 left == right。

三、寻找右侧边界的二分查找

寻找右侧边界和寻找左侧边界的代码差不多,只有两处不同,已标注:

intright_bound(int[] nums,inttarget) {if(nums.length ==0)return-1;intleft =0, right = nums.length;while(left < right) {intmid = (left + right) /2;if(nums[mid] ==target) { left = mid +1; // 注意 }elseif(nums[mid] <target) { left = mid +1; }elseif(nums[mid] >target) { right = mid; } }returnleft -1; // 注意}

1.为什么这个算法能够找到右侧边界?

答:类似地,关键点还是这里:

if(nums[mid] == target) {left= mid +1;

当 nums[mid] == target 时,不要立即返回,而是增大「搜索区间」的下界 left,使得区间不断向右收缩,达到锁定右侧边界的目的。

*2. *为什么最后返回 left - 1 而不像左侧边界的函数,返回 left?而且我觉得这里既然是搜索右侧边界,应该返回 right 才对。

答:首先,while 循环的终止条件是 left == right,所以 left 和 right 是一样的,你非要体现右侧的特点,返回 right - 1 好了。

至于为什么要减一,这是搜索右侧边界的一个特殊点,关键在这个条件判断:

if(nums[mid] == target) { left = mid +1;// 这样想: mid = left - 1

图片

因为我们对 left 的更新必须是 left = mid + 1,就是说 while 循环结束时,nums[left] 一定不等于 target 了,而 nums[left - 1] 可能是 target。

至于为什么 left 的更新必须是 left = mid + 1,同左侧边界搜索,就不再赘述。

*3. *为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

答:类似之前的左侧边界搜索,因为 while 的终止条件是 left == right,就是说 left 的取值范围是 [0, nums.length],所以可以添加两行代码,正确地返回 -1:

while(left < right) {// ...}if(left ==0)return-1;returnnums[left-1] == target ? (left-1) : -1;

四、最后总结

先来梳理一下这些细节差异的因果逻辑:

第一个,最基本的二分查找算法:

因为我们初始化right=nums.length-1所以决定了我们的「搜索区间」是 [left,right] 所以决定了 while (left<=right) 同时也决定了left=mid+1right=mid-1因为我们只需找到一个 target 的索引即可 所以当 nums[mid]==target 时可以立即返回

第二个,寻找左侧边界的二分查找:

因为我们初始化right=nums.length 所以决定了我们的「搜索区间」是 [left,right) 所以决定了 while (left<right) 同时也决定了left=mid+1right=mid 因为我们需找到 target 的最左侧索引 所以当 nums[mid]==target 时不要立即返回 而要收紧右侧边界以锁定左侧边界

第三个,寻找右侧边界的二分查找:

因为我们初始化right=nums.length 所以决定了我们的「搜索区间」是 [left,right) 所以决定了 while (left<right) 同时也决定了left=mid+1right=mid 因为我们需找到 target 的最右侧索引 所以当 nums[mid]==target 时不要立即返回 而要收紧左侧边界以锁定右侧边界 又因为收紧左侧边界时必须left=mid+1所以最后无论返回left还是right,必须减一

如果以上内容你都能理解,那么恭喜你,二分查找算法的细节不过如此。

通过本文,你学会了:

1.分析二分查找代码时,不要出现 else,全部展开成 else if 方便理解。

2.注意「搜索区间」和 while 的终止条件,如果存在漏掉的元素,记得在最后检查。

3.如需要搜索左右边界,只要在 nums[mid] == target 时做修改即可。搜索右侧时需要减一。

就算遇到其他的二分查找变形,运用这几点技巧,也能保证你写出正确的代码。LeetCode Explore 中有二分查找的专项练习,其中提供了三种不同的代码模板,现在你再去看看,很容易就知道这几个模板的实现原理了。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4528

    浏览量

    91770
  • 二分法
    +关注

    关注

    0

    文章

    5

    浏览量

    7545
收藏 人收藏

    评论

    相关推荐

    如何用C语言实现高效查找二分法)

    今天给分享一下使用C语言实现 二分 算法,主要包含以下几部分内容: 二分 查找 算法介绍 二分
    的头像 发表于06-04 08:04 721次阅读
    如何用C语言实现高效<b class='flag-5'>查找</b>(<b class='flag-5'>二分</b>法)

    Java常用排序算法&程序员必须掌握的8大排序算法+二分查找

    Java常用排序 算法&程序员必须掌握的8大排序 算法+ 二分查找
    发表于10-19 19:33

    简单的查找算法

    ; } return 0;} 3. 有序数组表的 查找:一般使用 二分查找。通过判断 查找元素与中间元素(mid)的大小来决定下一次的 查找在低
    发表于12-27 22:33

    浅析渐近表示法和二分

    算法图解》NOTE 1 算法的渐近表示法以及 二分
    发表于10-10 10:58

    基于二分图构造LDPC码的校验矩阵算法及性能解析,不看肯定后悔

    依据 二分图构造LDPC码的 算法矩阵及性能解析,看不出必然
    发表于06-22 06:52

    C语言教程之二分查找

    C语言教程之 二分 查找,很好的C语言资料,快来学习吧。
    发表于04-22 11:06 0次下载

    基于聚类算法二分网络社区挖掘算法

    针对 二分网络中社区挖掘的准确性不高、对额外参数的依赖较大的问题,基于谱聚类 算法的思想,从 二分网络的拓扑结构展开,提出了一种改进的社区挖掘 算法。该 算法
    发表于12-27 10:06 0次下载
    基于聚类<b class='flag-5'>算法</b>的<b class='flag-5'>二分</b>网络社区挖掘<b class='flag-5'>算法</b>

    基于C语言二分查找排序源代码

    本文档内容介绍了C语言归并、选择、直接插入、希尔、冒泡、快速、堆排序与顺序、 二分 查找排序源代码,分享给大家供大家参考。
    发表于01-04 11:24 1次下载

    图像处理算法二分查找

    二分 查找又称折半 查找,优点是比较次数少, 查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。
    的头像 发表于03-17 11:29 4763次阅读

    详解C语言二分查找算法细节

    我相信对很多读者朋友来说,编写 二分 查找算法代码属于玄学编程,虽然看起来很简单,就是会出错,要么会漏个等号,要么少加个 1。
    的头像 发表于06-22 09:05 2716次阅读
    详解C语言<b class='flag-5'>二分</b><b class='flag-5'>查找</b><b class='flag-5'>算法</b>细节

    二分查找及其变种的总结

    今天给大家带来的是 二分 查找及其变种的总结,大家一定要看到最后呀,非常非常用心的一篇文章,废话不多说,让导演帮我们把镜头切到袁记菜馆吧! 袁记菜馆内。。。。 店小 :掌柜的,您进货回来了呀,哟!今天您
    的头像 发表于01-04 14:28 2042次阅读
    <b class='flag-5'>二分</b><b class='flag-5'>查找</b>及其变种的总结

    一种融合语义模型的二分网络推荐算法

    当前基于 二分网络的推荐 算法未考虑推荐对象之间的语义关系,因此文中提出一种融合语义模型的 二分网络推荐 算法。该 算法利用作者主题模型将推荐对象的语
    发表于04-28 13:53 4次下载
    一种融合语义模型的<b class='flag-5'>二分</b>网络推荐<b class='flag-5'>算法</b>

    二分搜索算法运用的框架套路

    我们前文 我作了首诗,保你闭着眼睛也能写对 二分 查找详细介绍了 二分搜索的细节问题,探讨了「搜索一个元素」,「搜索左侧边界」,「搜索右侧边界」这三个情况,教你如何写出正确无 bug 的 二分
    的头像 发表于08-25 16:06 1710次阅读

    筑基_C_5_对数组的二分查找

    C语言泛型编程,实现对数组中某元素的 二分 查找
    发表于12-06 10:21 9次下载
    筑基_C_5_对数组的<b class='flag-5'>二分</b><b class='flag-5'>查找</b>

    FPGA设计中二分法查表算法的实现

    二分查找 算法是在软件中广泛应用的一种 算法,那么在FPGA的设计中是否可以用这种 算法呢?什么场景下会可能用到这种
    的头像 发表于09-06 18:26 801次阅读
    FPGA设计中<b class='flag-5'>二分</b>法查表<b class='flag-5'>算法</b>的实现