1 多模态上下文指令调优数据集MIMIC-IT-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

多模态上下文指令调优数据集MIMIC-IT

AI智胜未来 来源:机器之心 2023-06-12 16:36 次阅读

在包含 280 万条多模态上下文指令 - 相应对的数据集上训练之后,Otter 展现出了优秀的问答能力,并在 ChatGPT 及人类的两项评估中获得了很高的评价。

近段时间来,AI 对话助手在语言任务上取得了不小的进展。这种显著的进步不只是基于 LLM 强大的泛化能力,还应该归功于指令调优。这涉及到在一系列通过多样化和高质量指令的任务上对 LLM 进行微调。

借助指令调优获得零样本性能的一个潜在原因是,它内化了上下文。这很重要,特别是当用户输入跳过常识性的上下文时。通过纳入指令调优,LLM 获得了对用户意图的高度理解,即使在以前未见过的任务中也能表现出更好的零样本能力。

然而,一个理想的 AI 对话助手应该能够解决涉及多种模态的任务。这需要获得一个多样化和高质量的多模式指令跟随数据集。比如,LLaVAInstruct-150K 数据集(也被称为 LLaVA)就是一个常用的视觉 - 语言指令跟随数据集,它是使用 COCO 图像、指令和从 GPT-4 中获得的基于图像说明和目标边界框的响应构建的。但 LLaVA-Instruct-150K 具有三个局限性:有限的视觉多样性;使用图片作为单一视觉数据;上下文信息仅包含语言形态。

为了推动 AI 对话助手突破这些限制,来自新加坡南洋理工大学、微软雷蒙德研究院的学者们提出了多模态上下文指令调优数据集 MIMIC-IT,这是一个包含 280 万条多模态上下文指令 - 相应对的数据集,涵盖各种现实生活场景。

9522eaee-08f8-11ee-962d-dac502259ad0.png

论文地址:https://arxiv.org/pdf/2306.05425.pdf

此外,为了高效地生成指令 - 响应对,研究者还介绍了「Sythus」,这是一个受 self-instruct 方法启发的指令 - 响应注释的自动化 pipeline。Sythus 采用系统信息、视觉注释和上下文中的例子来指导语言模型(GPT-4 或 ChatGPT)根据视觉语境生成指令 - 响应对,针对视觉语言模型的三个基本能力:感知、推理和规划。此外,英文的指令和响应被译成七种语言,以支持多种语言的使用。

特别值得注意的是,研究者在 MIMIC-IT 上训练了基于 OpenFlamingo 的多模态模型「Otter」。通过 ChatGPT、人类两个方面的评估,Otter 的多模态能力超越了近期的其他视觉 - 语言模型。

在一系列 Demo 中,研究者展示了 Otter 的多模态问答能力:

Q:接下来出哪张牌?

A:八筒。这样你就能留着四条和五条,等着凑成顺子。

9549a288-08f8-11ee-962d-dac502259ad0.gif

Q:我想着陆了,怎么操作?

A:按一次左下按钮,左转,要着陆时拉右边的手刹。

9674723c-08f8-11ee-962d-dac502259ad0.gif

Q:接下来怎么办?

A:把球传到中路,跑到球门,寻找进球机会。

9883c956-08f8-11ee-962d-dac502259ad0.gif

接下来,让我们看看研究细节。

MIMIC-IT 数据集

MIMIC-IT 数据集包括 280 万个多模态指令 - 响应对,涵盖了基本能力:感知、推理和计划。每个指令都伴随着多模态的对话背景,使在 MIMIC-IT 上训练的 VLM 能够在交互式指令中表现出很好的熟练度,并能进行零样本的概括。

9b6be054-08f8-11ee-962d-dac502259ad0.png

相比于 LLaVA,MIMIC-IT 的特点包括:

(1) 多样化的视觉场景,包含了一般场景、自我中心视角场景和室内 RGB-D 图像等不同数据集的图像和视频

(2) 多个图像(或一个视频)作为视觉数据;

(3) 多模态的上下文信息,包括多个指令 - 响应对和多个图像或视频;

(4) 支持八种语言,包括英文、中文、西班牙文、日语、法语、德语、韩语和阿拉伯语。

下图进一步展示了二者的指令 - 响应对对比(黄色方框为 LLaVA):

9b7c8972-08f8-11ee-962d-dac502259ad0.png

如表 1 所示,MIMIC-IT 的数据源来自七个数据集:COCO、Spot-the-diff (SD)、ScanNetV2 (SN)、VisualStorytelling (VIST) 、DenseCaption/Activity caption(DC)、TVCaption(TVC)和 Ego4D(E4D)。「上下文」这一列的「lang.」表示语言,「vis.」表示视觉。

9bce7a98-08f8-11ee-962d-dac502259ad0.png

Sythus:自动化指令 - 响应对生成 pipeline

同时,研究者提出了 Sythus(图 3),这是一个自动化 pipeline,用于生成多种语言的高质量指令 - 响应对。在 LLaVA 提出的框架基础上,研究者利用 ChatGPT 来生成基于视觉内容的指令 - 响应对。为了确保生成的指令 - 响应对的质量,该 pipeline 将系统信息、视觉注释和上下文中的样本作为 ChatGPT 的 prompt。系统信息定义了所生成的指令 - 响应对的预期语气和风格,而视觉注释则提供了基本的图像信息,如边界框和图像描述。上下文中的样本帮助 ChatGPT 在语境中学习。

由于核心集的质量会影响后续的数据收集过程,研究者采用了一个冷启动策略,在大规模查询之前加强上下文中的样本。在冷启动阶段,采用启发式方法,仅通过系统信息和视觉注释来 prompt ChatGPT 收集上下文中的样本。这个阶段只有在确定了令人满意的上下文中的样本后才结束。在第四步,一旦获得指令 - 响应对,pipeline 会将它们扩展为中文(zh)、日文(ja)、西班牙文(es)、德文(de)、法文(fr)、韩文(ko)和阿拉伯语(ar)。进一步的细节,可参考附录 C,具体的任务 prompt 可以在附录 D 中找到。

9bfb534c-08f8-11ee-962d-dac502259ad0.png

经验性评估

随后,研究者展示了 MIMIC-IT 数据集的各种应用以及在其上训练的视觉语言模型 (VLM) 的潜在能力。首先,研究者介绍了使用 MIMIC-IT 数据集开发的上下文指令调优模型 Otter。而后,研究者探索了在 MIMIC-IT 数据集上训练 Otter 的各种方法,并讨论了可以有效使用 Otter 的众多场景。

图 5 是 Otter 在不同场景下的响应实例。由于在 MIMIC-IT 数据集上进行了训练,Otter 能够为情境理解和推理、上下文样本学习、自我中心的视觉助手服务。

9c44b744-08f8-11ee-962d-dac502259ad0.png

最后,研究者在一系列基准测试中对 Otter 与其他 VLM 的性能进行了比较分析。

ChatGPT 评估

下表 2 展示了研究者利用 MMAGIBench 框架对视觉语言模型的感知和推理能力进行广泛的评估。

9c4da606-08f8-11ee-962d-dac502259ad0.png

人类评估

Multi-Modality Arena使用 Elo 评级系统来评估 VLM 响应的有用性和一致性。图 6 (b) 显示 Otter 展示了卓越的实用性和一致性,在最近的 VLM 中获得了最高的 Elo 评级。

少样本上下文学习基准评估

Otter 基于 OpenFlamingo 进行微调,OpenFlamingo 是一种专为多模态上下文学习而设计的架构。使用 MIMIC-IT 数据集进行微调后,Otter 在 COCO 字幕 (CIDEr) 少样本评估(见图 6 (c))上的表现明显优于 OpenFlamingo。正如预期的那样,微调还带来了零样本评估的边际性能增益。

9c6c9fe8-08f8-11ee-962d-dac502259ad0.png

图 6:ChatGPT 视频理解的评估。

讨论

缺陷。虽然研究者已经迭代改进了系统消息和指令 - 响应示例,但 ChatGPT 容易出现语言幻觉,因此它可能会生成错误的响应。通常,更可靠的语言模型需要 self-instruct 数据生成。

未来工作。未来,研究者计划支持更多具体地 AI 数据集,例如 LanguageTable 和 SayCan。研究者也考虑使用更值得信赖的语言模型或生成技术来改进指令集。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30726

    浏览量

    268871
  • 语言模型
    +关注

    关注

    0

    文章

    520

    浏览量

    10268
  • 数据集
    +关注

    关注

    4

    文章

    1208

    浏览量

    24688

原文标题:280万条多模态指令-响应对,八种语言通用,首个涵盖视频内容的指令数据集MIMIC-IT来了

文章出处:【微信号:AI智胜未来,微信公众号:AI智胜未来】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    关于进程上下文、中断上下文及原子上下文的一些概念理解

    开讲之前,咱们有必要看看这两个概念:a -- 上下文 上下文是从英文context翻译过来,指的是一种环境。相对于进程而言,就是进程执行时的环境; 具体来说就是各个变量和数据,包括所有的寄存器变量
    发表于 09-06 09:58

    进程上下文与中断上下文的理解

    来源 网络一.什么是内核态和用户态内核态:在内核空间执行,通常是驱动程序,中断相关程序,内核调度程序,内存管理及其操作程序。用户态:用户程序运行空间。 二.什么是进程上下文与中断上下文1.进程上下文
    发表于 12-11 19:45

    JavaScript的执行上下文

    JavaScript执行上下文之执行上下文
    发表于 05-29 16:12

    进程上下文/中断上下文及原子上下文的概念

    为什么会有上下文这种概念进程上下文/中断上下文及原子上下文的概念
    发表于 01-13 07:17

    基于Agent的用户上下文自适应站点构架

    自适应站点很少考虑对用户环境的自适应。为此,提出用户上下文自适应站点的概念,给出基于Agent技术的用户上下文自适应站点构架模型。阐述用户上下文获取、挖掘过程以及站
    发表于 04-11 08:49 13次下载

    基于交互上下文的预测方法

    传统的上下文预测是在单用户的上下文基础上进行的,忽视了实际普适计算环境中由于用户交互活动导致的上下文变化因素。为了合理、有效地解决上述局限性问题,该文提出基
    发表于 10-04 14:08 7次下载

    终端业务上下文的定义方法及业务模型

    该文针对业务上下文仅关注业务质量较少考虑用户终端环境的现状,提出终端业务上下文的概念,为普适业务的开展提供必要的信息支撑。给出一种终端业务上下文的通用定义方法
    发表于 03-06 11:06 11次下载

    基于Pocket PC的上下文菜单实现

    介绍了基于 Pocket PC 中的点按操作概念, 论述了在Pocket PC 中上下文菜单的实现原理及方法, 并给出了基于MFC 下的Windows CE 应用程序实现上下文菜单的步骤和代码实例。
    发表于 07-25 18:26 17次下载

    基于Pocket PC的上下文菜单实现

    本文介绍了基于 Pocket PC 中的“点按”操作概念 论述了在 Pocket PC 中上下文菜单的实现原理及方法 并给出了基于 MFC 下的 Windows CE 应用程序实现上下文菜单的步骤和代码实例 。
    发表于 04-18 10:46 0次下载

    基于上下文相似度的分解推荐算法

    针对移动服务推荐中用户上下文环境复杂多变和数据稀疏性问题,提出一种基于移动用户上下文相似度的张量分解推荐算法-UCS-TF。该算法组合用户间的多维上下文相似度和
    发表于 11-27 17:42 0次下载

    基于低秩重检测的特征时空上下文的视觉跟踪

    无法进行初始化.针对时空上下文算法存在的弱点。本文提出了一个基于低秩重检测的特征时空上下文跟踪方法.首先利用特征对时空上下文进行多方面的
    发表于 12-15 15:01 0次下载

    初学OpenGL:什么是绘制上下文

    初学OpenGL,打开红宝书,会告诉你OpenGL是个状态机,OpenGL采用了客户端-服务器模式,那时觉得好抽象,直到后来了解了绘制上下文才把这些联系起来。我们可以认为每一个硬件GPU是个服务器
    发表于 04-28 11:47 2455次阅读

    如何分析Linux CPU上下文切换问题

    在我的上一篇文章:《探讨 Linux CPU 的上下文切换》中,我谈到了 CPU 上下文切换的工作原理。快速回顾一下,CPU 上下文切换是保证 Linux 系统正常运行的核心功能。可分为进程
    的头像 发表于 05-05 20:11 1940次阅读

    网络安全中的上下文感知

    当今,所有网络安全领域都在向上下文感知基础设施转变。应用程序感知、身份感知、内容感知、流程感知、环境感知,都是向上下文感知转变的例子。
    的头像 发表于 09-20 09:27 2228次阅读

    Linux技术:什么是cpu上下文切换

    过多的上下文切换会消耗 CPU 的时间来保存和恢复寄存器、程序计数器、内核栈和虚拟内存等数据,从而导致系统性能显着下降。 既然上下文切换对系统性能的影响如此之大,那么我们如何检查它呢?好了,你可以使用 vmstat 工具来查询你
    发表于 09-01 09:31 471次阅读
    Linux技术:什么是cpu<b class='flag-5'>上下文</b>切换