本产品是国内首创自主研发的高质量二维氮化硼纳米片,成功制备了大面积、厚度可控的二维氮化硼散热膜,具有透电磁波、高导热、高柔性、低介电系数、低介电损耗等多种优异特性,解决了当前我国电子封装及热管理领域面临的“卡脖子”问题,拥有国际先进的热管理TIM解决方案及相关材料生产技术,是国内低维材料技术领域顶尖的创新型高科技产品。
什么是5G?
一
定义
“5G”一词通常用于指代第5代移动网络。5G是继之前的标准(1G、2G、3G、4G 网络)之后的最新全球无线标准,并为数据密集型应用提供更高的带宽。除其他好处外,5G有助于建立一个新的、更强大的网络,该网络能够支持通常被称为 IoT 或“物联网”的设备爆炸式增长的连接——该网络不仅可以连接人们通常使用的端点,还可以连接一系列新设备,包括各种家用物品和机器。
公认的5G优势是:
•具有更高可用性和容量的更可靠的网络
•更高的峰值数据速度(多Gbps)
•超低延迟
与前几代网络不同,5G网络利用在26GHz 至40GHz范围内运行的高频波长(通常称为毫米波)。由于干扰建筑物、树木甚至雨等物体,在这些高频下会遇到传输损耗,因此需要更高功率和更高效的电源。
5G部署最初可能会以增强型移动宽带应用为中心,满足以人为中心的多媒体内容、服务和数据接入需求。增强型移动宽带用例将包括全新的应用领域、性能提升的需求和日益无缝的用户体验,超越现有移动宽带应用所支持的水平。
二
毫米波是关键技术
毫米波通信是未来无线移动通信重要发展方向之一,目前已经在大规模天线技术、低比特量化ADC、低复杂度信道估计技术、功放非线性失真等关键技术上有了明显研究进展。但是随着新一代无线通信对无线宽带通信网络提出新的长距离、高移动、更大传输速率的军用、民用特殊应用场景的需求,针对毫米波无线通信的理论研究与系统设计面临重大挑战,开展面向长距离、高移动毫米波无线宽带系统的基础理论和关键技术研究,已经成为新一代宽带移动通信最具潜力的研究方向之一。
毫米波的优势:毫米波由于其频率高、波长短,具有如下特点:
频谱宽,配合各种多址复用技术的使用可以极大提升信道容量,适用于高速多媒体传输业务;可靠性高,较高的频率使其受干扰很少,能较好抵抗雨水天气的影响,提供稳定的传输信道;方向性好,毫米波受空气中各种悬浮颗粒物的吸收较大,使得传输波束较窄,增大了窃听难度,适合短距离点对点通信;波长极短,所需的天线尺寸很小,易于在较小的空间内集成大规模天线阵。
毫米波的缺点:毫米波也有一个主要缺点,那就是不容易穿过建筑物或者障碍物,并且可以被叶子和雨水吸收,对材料非常敏感。这也是为什么5G网络将会采用小基站的方式来加强传统的蜂窝塔。
什么是TIM热管理?
定义
热管理?顾名思义,就是对“热“进行管理,英文是:Thermal Management。热管理系统广泛应用于国民经济以及国防等各个领域,控制着系统中热的分散、存储与转换。先进的热管理材料构成了热管理系统的物质基础,而热传导率则是所有热管理材料的核心技术指标。
导热率,又称导热系数,反映物质的热传导能力,按傅立叶定律,其定义为单位温度梯度(在1m长度内温度降低1K)在单位时间内经单位导热面所传递的热量。热导率大,表示物体是优良的热导体;而热导率小的是热的不良导体或为热绝缘体。
5G手机以及硬件终端产品的小型化、集成化和多功能化,毫米波穿透力差,电子设备和许多其他高功率系统的性能和可靠性受到散热问题的严重威胁。要解决这个问题,散热材料必须在导热性、厚度、灵活性和坚固性方面获得更好的性能,以匹配散热系统的复杂性和高度集成性。
一
5G时代高功率、高集成、高热量趋势明显,热管理成为智能手机“硬需求”
一代通信技术,一代手机形态,一代热管理方案。通信技术的演进,会持续引发移动互联网应用场景的变革,并推动手机芯片和元器件性能快速提升。但与此同时,电子器件发热量迅速增加,对手机可靠性和移动互联网发展带来了严峻挑战。从4G时代进入5G时代,智能手机芯片性能、数据传输速率、射频模组等都有着巨大提升,无线充电、NFC等功能逐渐成为标配,手机散热压力持续增长。5G手机散热的主流方案,高导热材料、并加速向超薄化、结构简单化和低成本方向发展,技术迭代正在加速进行。未来随着5G终端产品进一步放量,TIM市场增长潜力巨大。
2020年,5G技术迈向全面普及,消费电子产品向高功率、高集成、轻薄化和智能化方向加速发展。由于集成度、功率密度和组装密度等指标持续上升,5G时代电子器件在性能不断提升的同时,工作功耗和发热量急遽升高。据统计,电子器件因热集中引起的材料失效占总失效率的65-80%。为避免过热带来的器件失效,导热硅脂、导热凝胶、石墨导热片、热管和均热板(VC)等技术相继出现、持续演进,散热管理已经成为5G时代电子器件的“硬需求”。
(一)智能手机功耗持续提升,散热需求水涨船高4G时代,智能手机数据传输速度和处理能力相比2G、3G时代有显著提升,AR、高清视频、直播等应用场景加速落地,人们对手机性能的要求越来越高,推动手机硬件配置快速迭代。但与此同时,智能手机发热的问题也越来越严重,手机发烫、卡顿和死机时有发生,严重时甚至会导致主板烧坏乃至爆炸。根据EUCNC数据,LTE智能手机功耗主要来源于功率放大器、应用处理器、屏幕和背光、信号收发器和基带处理器。随着消费电子产品向高集成、轻薄化和智能化方向发展,芯片和元器件体积不断缩小,功率密度却在快速增加,智能手机的散热需求成为亟需解决的问题:
(1)芯片性能更高,四核、八核成为主流;
(2)柔性显示、全面屏逐渐普及,2K/4K屏占领高端市场;
(3)内置更多无线功能,例如NFC、GPS、蓝牙和无线充电;
(4)机身越来越薄,封装密度越来越高。表1 手机主要热量来源 随着5G技术逐渐走向成熟,智能手机对散热管理的需求再次大幅提升,主要表现为以下几方面:(1)5G手机射频前端支持的频段数量大幅增加,需采用Massive MIMO技术以增强信号接收能力,天线数量和射频器件数量远超4G手机;(2)5G手机芯片处理能力有望达到4G手机的5倍以上,手机发热密度绝对值将是4G手机的2倍以上;(3)5G信号穿透能力变弱,手机机身材质逐渐向陶瓷和聚合物转变,加之5G手机越来越紧凑,导致散热能力越来越弱。(二)5G来袭发热量剧增,散热需求进一步凸显通信制式及手机支持频率 表2 射频前端价值对比测量 此外,5G手机普遍采用基带外挂的方案,相关电路和电源芯片也要增加,手机内部功耗相应增加;由于5G覆盖范围不足,导致手机频繁启动5G信号搜索功能,发热量也会变大。试验证明,温度每升高2℃,电子元器件可靠性将下降10%,其在50℃环境下的寿命只有25℃的 1/6。由此可见,散热器件是5G手机中不能省掉、必不可少的环节。 (三)散热解决方案多样,导热材料器件频频现身一般而言,电子器件散热有主动散热(降低手机自发热量)和被动散热(加快热量向外散出)两种路线。其中,主动散热主要利用与发热体无关的动力元件强制散热,一般应用于高功率密度且体积相对较大的电子设备,如台式机和笔记本中配备的风扇、数据中心服务器的液冷散热;被动散热则主要通过导热材料和导热器件将元器件产生的热量释放到环境中,是一种没有动力元件参与的散热方式,广泛应用于手机、平板、智能手表、户外基站等。表3 热量传递方式及相关散热解决方案 电子器件散热过程示意图目前,电子器件使用的散热技术主要包括石墨散热、金属背板、边框散热、导热凝胶散热等导热材料,以及热管、VC等导热器件。其中,导热凝胶、导热硅脂、石墨片和金属片主要在中小型电子产品使用,热管和VC则主要用在笔记本、电脑、服务器等中大型电子设备中使用。主要导热材料
导热系数和厚度是评估散热材料的核心指标。传统手机散热材料以石墨片和导热凝胶等热界面材料(TIM)为主,但是石墨片存在导热系数相对较低,TIM材料则存在厚度相对较大等问题。在手机厂商的推动下,石墨烯材料持续取得突破,开始切入到消费电子散热应用;热管和VC厚度不断降低,开始从电脑、服务器等领域渗透到智能手机领域。 不同散热材料/器件的导热效率2019年12月,OPPO在新发布的Reno3 Pro 5G手机中,采用了“VC液冷散热+多层石墨片覆盖”的立体液冷散热系统。其中,定制版柔性屏上覆盖了一层铜箔和双层石墨片,将屏幕的热能均匀传导出去。导热凝胶将处理器附近的热能传导至VC,并通过VC内的液体进行热传导和降温。中框及电池盖均覆盖了3层石墨片,进一步加强散热。 OPPOReno 3 Pro散热模组示意图什么是吸波材料?
定义
所谓吸波材料,指能吸收或者大幅减弱其表面接收到的电磁波能量,从而减少电磁波的干扰的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。
介绍
1.1 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场、机航班因电磁波干扰无法起飞而误点;在医院、移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。
1.2 电磁辐射通过热效应、非热效应、累积效应对人体造成直接和间接的伤害。研究证实,铁氧体吸波材料性能最佳,它具有吸收频段高、吸收率高、匹配厚度薄等特点。将这种材料应用于电子设备中可吸收泄露的电磁辐射,能达到消除电磁干扰的目的。根据电磁波在介质中从低磁导向高磁导方向传播的规律,利用高磁导率铁氧体引导电磁波,通过共振,大量吸收电磁波的辐射能量,再通过耦合把电磁波的能量转变成热能。
1.3 吸波材料在设计时,要考虑两个问题,1)、电磁波遭遇吸波材料表面时,尽可能完全穿过表面,减少反射;2)、在电磁波进入到吸波材料内部时,要使电磁波的能量尽量损耗掉;
5G手机材料:EMC软磁吸波材料
软磁性材料指的是当磁化发生在Hc不大于1000A/m,这样的材料称为软磁体。软磁性材料的剩磁与矫顽磁力都很小,即磁滞回线很窄,它与基本磁化曲线几乎重合。这种软磁性材料适宜作电感线圈、变压器、继电器和电机的铁芯。常用的软磁性材料有硅钢片,坡莫合金和铁氧体等。
-
原理
不同的铁磁材料磁滞现象的程度不同,磁滞回线水平方向越宽的材料,也就是磁滞回线面积越大的材料,其磁滞现象越严重。
磁滞回线面积宽阔,材料的剩磁和矫顽磁力都大,其磁滞损失严重,不宜于作交变磁场中工作的铁心,而适合于作永久磁铁,这种材料称为硬磁性材料。
磁滞回线瘦窄,而面积较小,这种材料称为软磁性材料,它的磁滞损失较小,适于交变磁场工作。软磁材料是电子工业中变压器、电机等电磁设备所不可缺少的材料。
-
性能参数
饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs
矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。
降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)。
-
软磁材料
软磁性材料指的是当磁化发生在Hc不大于1000A/m,这样的材料称为软磁体。软磁性材料的剩磁与矫顽磁力都很小,即磁滞回线很窄,它与基本磁化曲线几乎重合。这种软磁性材料适宜作电感线圈、变压器、继电器和电机的铁芯。常用的软磁性材料有硅钢片,坡莫合金和铁氧体等。
-
吸波材料按损耗机制分类
1、电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。
2、电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。
3、磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。
-
EMI/RFI中电磁波的场概念
-
软磁类吸波材料定义及作用频段划分
-
吸波材料作用机理之吸收损耗类别
-
吸波材料先期设计仿真
-
典型应用:A区吸波材料(近场应用之能量转换)
-
典型应用:B取吸波材料(辐射近场EMI/RFI)
-
典型应用:B区吸波材料(辐射近场EMI/RFI)
-
典型应用:C区吸波材料(辐射远场mmWAVE应用)
适用于5G毫米波应用の导热吸波新材料---TAM
一
概述
MS-TA30系列吸波材料是以高分子硅胶为基材,添加陶瓷粉、软磁颗粒以及像一个的助剂制成的复合材料。在较低压力下可实现低界面热阻性能和代偿吸波性能,能够填充缝隙、完成发热部位与散热部位间的热传递和电磁噪音吸收,减少电磁波干扰,净化电磁环境;同时也具有绝缘、减震、密封等作用,满足小型化及超薄化的设计要求。
二
特点
三
产品效能
四
终端应用市场
五
产品系列
六
产品性能参数
七
性能曲线图
-
毫米波
+关注
关注
21文章
1923浏览量
64778 -
5G
+关注
关注
1354文章
48436浏览量
563951
发布评论请先 登录
相关推荐
评论