1 用SPAD 23在共聚焦显微镜中实现波动对比度的超分辨率-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用SPAD 23在共聚焦显微镜中实现波动对比度的超分辨率

上海昊量光电设备有限公司 2023-02-22 11:27 次阅读

在过去的 20 年里,远场光学显微镜已经跨越了以阿贝衍射极限为代表的一度难以逾越的分辨率障碍 ,开发多种成功的方法,如受激发射损耗(STED) 、单分子定位方法(PALM 和 STORM) ,结构照明显微术(SIM)和超分辨率光学波动成像(SOFI),这要归功于图像传感器技术的改进以及单分子光谱学的巨大进步。

在这里,我们提出了一种新的显微技术,它利用 SPAD23阵列探测器的超高时间分辨率来测量荧光波动引起的相关性。在 ISM 架构中测量的这种相关性,然后被用作具有高达 4 倍增强横向分辨率和增强轴向分辨率的超分辨率图像的对比度。仅用几毫秒的像素驻留时间就可以获得高信噪比的超分辨率图像。

单光子探测器阵列SPAD23技术源于代尔夫特理工大学和洛桑联邦理工学院 7 年的研究工作和 6 项独特技术。它是由23个六角形封装的单光子雪崩二极管组成的探测器阵列(SPADs),具有更高的灵敏度和更低的噪声。昊量光电这款单光子探测器阵列SPAD23在其宽探测谱段内拥有>50%的探测效率,<100cps的暗计数水平,且因其独特的半导体工艺及设计实现了前所未有的填充因子>80%。单光子探测器阵列SPAD23带有时间标记功能(Time Tagging)整体尺寸只有信用卡大小,是荧光显微和量子信息领域的理想探测工具。

f0b0b1a2-b1fa-11ed-ad0d-dac502259ad0.png

参数条件代表
峰值检测概率Vop=32V55%@520nm
PDP>35%的波长窗口Vop=32V440-660nm
填充因子平行光>80%
暗计数Vop=32V ;T=20℃<100cps
DCR>1kcps的噪声像素数Vop=32V1
死时间Vop=32V ;Vq=0.8V50ns
时间抖动Vop=32V120ps
后脉冲Vop=32V ;Vq=0.8V0.1%
串扰Vop=32V0.14%
每像素最大计数率7.8Mcps
Time-tagging精度20ps

得益于SPAD23单光子阵列探测器的优异性能,在与共聚焦显微镜搭配使用的过程中,增加了光的收集,最终获得了更清晰、更明亮的图像,其中还包含有关潜在分子功能、相互作用和环境的功能信息。

下图提出了一种超分辨光学起伏图像扫描显微术的方案;设置在标准共焦显微镜的图像平面中的针孔和单像素检测器被替换为 23 像素的 SPAD 阵列,SPAD23单光子阵列探测器,增加了光线收集,提高了成像速度,减少了背景噪音,能够在共聚焦显微镜中实现波动对比度的超分辨率。当扫描样品台时,每个光子的检测时间记录在相连的 FPGA 电路中,并以数字形式存储。然后分析该数据,为阵列中的每个像素对产生第二个相关图像,产生 23²个分辨率增强为 2 的相关图像。如下图b所示分辨率的提高可归因于两个因素。首先,如在 ISM 中一样,每个小探测器的点扩展函数(PSF)是激发和其探测 PSF 的乘积。此外,从两个这样的 ISM PSFs 相乘得到的相关对比度实现了进一步的变窄。在对图像进行适当的移动以使其相互重叠之后,这一过程被称为像素重新分配,我们在空间频率域中应用傅立叶重新加权滤波的最后阶段。理论上,最终 SOFISM 图像的 PSF 具有超过衍射极限 4 倍的横向分辨率增强。

f0f55596-b1fa-11ed-ad0d-dac502259ad0.png

图C 展示了 SOFISM,对相对稀疏的单个 CdSe/CdS/ZnS核/壳/壳量子点(QDs)的样品进行成像。除了由于衍射造成的模糊之外,标准的共焦图像(CLSM)包含大量的噪声,这是由于量子点的发射强度在亮和暗状态(闪烁)之间的波动造成的。生成标准 ISM 图像的分辨率提高了 2 倍,同时噪声水平明显降低,通过像素重新分配达到平均水平。或者,通过计算荧光信号的二阶相关矩阵,然后重复 ISM 过程的剩余部分(像素重新分配和傅立叶重新加权),产生分辨率提高 2.5 倍的更清晰的图像。我们注意到,这个数字低于理论预测的数字,可能是由于探测器的有限尺寸、样品振动和其他技术方面的原因。

最后,还可以生成互相关阶数高于 2 的 SOFISM 图像;上图C 展示了来自相同场景的 4 阶相关图像,产生横向分辨率的 4倍增强。在类似的实验条件下,尽管检测方案有些麻烦,SOFISM 已经被证明在轴向分辨率上提供了 2 倍的改进,虽然一些成熟的超分辨率技术已经被生命科学研究团体采用并取得了巨大成功,但是 SPAD 阵列技术的最新进展为可以针对特定需求提供超分辨率解决方案。SOFISM 可以提供一种实验上简单的方法,在合理的曝光时间内提供显著的 3D 分辨率增强,并且没有显著的实验复杂性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 探测器
    +关注

    关注

    14

    文章

    2631

    浏览量

    72997
  • 显微镜
    +关注

    关注

    0

    文章

    558

    浏览量

    23020
收藏 人收藏

    评论

    相关推荐

    共聚焦激光显微镜材料科学中的应用

    材料科学是研究材料的结构、性质、加工和应用的学科。随着科技的发展,对材料性能的要求越来越高,这就需要更精确的表征手段来研究材料的微观结构。共聚焦激光显微镜(CLSM)因其高分辨率和三维成像能力,
    的头像 发表于 10-30 09:44 221次阅读

    共聚焦激光显微镜对比分辨显微镜

    显微镜(CLSM) 1.1 工作原理 共聚焦激光显微镜通过使用激光作为光源,结合共聚焦技术来获取样品的高分辨率图像。
    的头像 发表于 10-30 09:42 407次阅读

    共聚焦激光显微镜的光学系统解析

    。 引言 共聚焦激光显微镜是一种广泛应用于生物医学、材料科学和纳米技术等领域的显微成像技术。它通过共聚焦技术,能够实现对样本的高
    的头像 发表于 10-30 09:40 620次阅读

    共聚焦激光显微镜的使用注意事项

    共聚焦激光显微镜(Confocal Laser Scanning Microscopy, CLSM)是一种先进的显微成像技术,它通过使用激光作为光源,结合共聚焦技术,能够获得高
    的头像 发表于 10-30 09:38 378次阅读

    共聚焦激光显微镜工作原理

    在生物医学研究中,对细胞和组织的精确观察至关重要。传统的光学显微镜虽然能够提供一定的分辨率,但在深度和对比度上存在局限。共聚焦激光显微镜的出
    的头像 发表于 10-30 09:27 385次阅读

    共聚焦显微镜有什么

    科学研究和精密制造领域,对材料表面特性的准确测量至关重要。共聚焦显微镜作为一种先进的显微成像技术,提供了一种非接触、高分辨率的表面分析手段
    的头像 发表于 06-24 09:58 677次阅读
    <b class='flag-5'>共聚焦</b><b class='flag-5'>显微镜</b>有什么<b class='flag-5'>用</b>?

    共聚焦显微镜:成像原理、功能、分辨率与优势解析

    。通过使用光源,显微镜能够对样品进行逐点扫描,并通过共轭孔径系统排除非焦平面的光,从而实现分辨率的二维图像。此外,通过逐层扫描,共聚焦显微镜
    的头像 发表于 06-14 09:28 1519次阅读
    <b class='flag-5'>共聚焦</b><b class='flag-5'>显微镜</b>:成像原理、功能、<b class='flag-5'>分辨率</b>与优势解析

    共聚焦、光学显微镜与测量显微镜的区分

    共聚焦显微镜是一种光学显微镜,也可以被称为测量显微镜它用于精确测量样品的尺寸、形状、表面粗糙
    发表于 05-14 10:43 3次下载

    激光共聚焦显微镜测粗糙,解读表面粗糙的科技利器

    激光共聚焦显微镜(Laser Scanning Confocal Microscope,简称LSCM)是一种光学显微镜,通过激光束的聚焦和散射技术,能够实现
    发表于 04-16 10:42 0次下载

    共聚焦显微镜和激光共聚焦显微镜的区别详解

    两者细节和特性上存在差异。1、原理上的差别:共聚焦显微镜基于共焦原理的显微镜技术,是一种使用了透镜系统将样品的不同焦深处的光聚焦到同一焦点
    发表于 04-16 10:40 0次下载

    激光共聚焦显微镜测粗糙,解读表面粗糙的科技利器

    激光共聚焦显微镜通过激光束聚焦和散射技术实现分辨率三维图像采集和表面测量,具有高分辨率、三维测量、非接触测量和实时成像等优势,广泛应用于材
    的头像 发表于 04-08 15:20 837次阅读
    激光<b class='flag-5'>共聚焦显微镜</b>测粗糙<b class='flag-5'>度</b>,解读表面粗糙<b class='flag-5'>度</b>的科技利器

    显微测量|共聚焦显微镜大倾角清纳米三维显微成像

    用于材料科学领域的共聚焦显微镜,基于光学共轭共焦原理,其超高的空间分辨率和三维成像能力,提供了全新的视角和解决方案。工作原理共聚焦显微镜通过
    发表于 02-20 09:07 1次下载

    显微测量|共聚焦显微镜大倾角清纳米三维显微成像

    共聚焦显微镜材料学领域应用广泛,通过超高分辨率的三维显微成像测量,可清晰观察材料的表面形貌、表层结构和纳米尺度的缺陷,有助于理解材料的微观
    的头像 发表于 02-18 10:53 529次阅读
    <b class='flag-5'>显微</b>测量|<b class='flag-5'>共聚焦</b><b class='flag-5'>显微镜</b>大倾角<b class='flag-5'>超</b>清纳米三维<b class='flag-5'>显微</b>成像

    激光共聚焦显微镜:材料表面粗糙的救星

    问题,无法满足精细材料表面的检测需求。而激光共聚焦显微镜以其高分辨率、高灵敏和高测量速度等优势,成为材料表面粗糙检测的得力工具。为什么要选择共聚
    发表于 01-18 10:53 0次下载

    中图共聚焦显微镜大倾角清纳米测量应用场景举例

    共聚焦显微镜可以非常小的区域内进行高分辨率成像,用途广泛。特别在材料科学研究中,适合用于观察材料的表面形貌结构。中图共聚焦
    的头像 发表于 12-26 11:48 528次阅读
    中图<b class='flag-5'>共聚焦</b><b class='flag-5'>显微镜</b>大倾角<b class='flag-5'>超</b>清纳米测量应用场景举例