1 【虹科干货】如何用AI视觉助力质量检测-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【虹科干货】如何用AI视觉助力质量检测

虹科智能感知 2023-06-08 10:52 次阅读

AI视觉是一种基于计算机视觉人工智能技术的前沿技术,可应用于各种质检场景。通过该技术,可以迅速检测产品外观缺陷、零件缺陷、装配误差等问题,进一步强化产品的质量和稳定性。当然,这项技术还需要进一步发展成熟,特别是在工业环境中还需要继续完善,才能达到公认的传统图像处理方法那样的接受水平。虹科为用户提供了友好的软件工具和智能相机硬件,这样,即使用户没有经验,也可以使用AI视觉来处理项目应用,并以直观简易的方式部署实施。

本文目录

01 AI带来的优势

02 应用示例

03 验证神经网络训练的效果

04 具备充分解释的能力

05 应对计划之外的情况

06 用户友好型工具

07 虹科NXT智能相机

08 虹科NXT lighthouse云端AI训练平台

5e1a881c-00d9-11ee-ba01-dac502259ad0.gif

01 AI带来的优势

相比基于规则的方法,基于AI的方法工作方式完全不同,这是它们最大的优势。这使提供商能够开发全新的图像处理工具,这些工具的使用方式更加直观。这些工具通过机器学习,已经能够将人工质量要求工作转由基于AI的图像处理系统实施,从而实现了流程优化和自动化。通常,在这个过程中不需要编写任何源代码,这样就消除了对编程技能的需求,从而大大拓宽了AI视觉的目标群体。这样,公司在评估阶段不必再依赖程序员和图像处理专家,可以选择最了解产品及其特点的员工进行可行性分析。

5e1a881c-00d9-11ee-ba01-dac502259ad0.gif

02 应用示例

我们可以看看一位虹科客户的应用示例,从而了解AI视觉的优势。旋转轴通常用卡环固定。然而,只有卡环完全啮合在轴槽中,才能确保连接100%安全。错误安装可能导致产品损坏。质量保证的任务似乎很简单,只要检查卡环是否正确接合即可!然而,事实是,由于尚未找到安全的自动化解决方案,这一检测仍以人工方式执行。基于规则的图像处理测试只能确保卡环是否存在。即使在理想情况下,也只能做到确定卡环的“耳朵”的距离是否大于要求距离。然而,这并不一定意味着卡环已牢固接合!它也可能只是放在上面!在这种错误情况下,只能通过难以实现的规则描述细微图像差异,困难重重。而如果使用机器学习方法进行可行性分析,仅需要正确和错误案例的一些图像示例(在这种情况下不超过300例)来训练神经网络,就能够以较高可信度预测卡环的错误位置。因此,只针对极少数不确定的结果进行手动目视检查就足够了。

5e1a881c-00d9-11ee-ba01-dac502259ad0.gif

03 验证神经网络训练的效果

可以通过样本图像的测试来验证神经网络训练的效果。使用包含已知错误类别的图像进行测试运行,就可以体现学习精度和AI结果的质量。“良好”和“不良”案例的概率差别越明显,“良好”和“不良”之间的决定性阈值就越清晰,这样就可以在生产运营后期尽可能减少“良好”和“不良”案例的错误识别。测试期间确定的“良好”概率的变化也有助于优化生产环境。毕竟,环境条件和不相关的图像内容变化越小,对AI分析中的相关区别特征做出的质量陈述就越具体。

5e4e2f82-00d9-11ee-ba01-dac502259ad0.png

图1 使用已知错误类别的测试数据对训练后的CNN进行验证,一方面显示了网络识别错误的能力,另一方面显示了结果的变化程度。

5e1a881c-00d9-11ee-ba01-dac502259ad0.gif

04 具备充分解释的能力

事实上,人工智能质量决策无法通过一组明确定义的规则进行追踪,算法更像一个黑匣子,但是这并不意味着结果无法解释。“热力图”或“异常图”等工具能够显示与预测相关的像素在图像中的位置以及它们产生影响的程度。在我们的卡环检查中,这些工具指出了已知缺陷类别的相关特征,符合预期。这在异常检测中尤为明显,使我们能够整理出未知(当然也就未经培训)的缺陷案例。这证明了机器学习方法还能够使用已知特征的训练知识,准确显示将出现的未知问题。例如,失焦相机图像导致异常图在多个位置标记偏差。5ea5de12-00d9-11ee-ba01-dac502259ad0.png

图2 注意力地图显示了相关的图像像素,从而直观解释了人工智能预测是如何产生的。

5e1a881c-00d9-11ee-ba01-dac502259ad0.gif

05 应对计划之外的情况

因此,异常检测为质量保证带来了另一项优势,这在基于规则的图像处理中难以实现。这种方式能够发现相较正常情况的任何偏差,即使在训练中并未充分体现这种偏差也不会构成障碍,这成为决定性因素。换句话说,它能够应对计划之外的情况。因此,当其他方法对“未知”的情况难以判定,有时甚至失败时,这种方法可以充分发现各种隐藏问题。这包括在正常运行过程中某个时刻可能发生的一切情况。由于可以获得系统状况的连续数据,例如增加产品缺陷或偏差(即异常)的情况,人们能够在产品质量大幅下降或发生最坏情况(如工厂故障)之前确定维护系统的最佳时间。

5ede0b52-00d9-11ee-ba01-dac502259ad0.png

图3 异常误差的增加可能表明由于工具磨损、污垢或其他干扰导致的生产条件恶化。

5e1a881c-00d9-11ee-ba01-dac502259ad0.gif

06 用户友好型工具

AI视觉可以通过多种方式在质量保证领域大显身手,并可以扩展或改进现有应用。循序渐进很重要。提前进行可行性分析有助于了解一项任务是否真的可以用AI视觉处理,否则会导致在专家人员、知识构建和AI系统方面白白耗费大量金钱和时间。这就需要一系列用户友好型软件工具的帮助,它们可以实现完全基于图像的初始评估,甚至可以在云端完成。这一过程既不需要具有AI能力的真实视觉系统,也不需要单独的训练平台。这大大降低了投资风险。这些工具用户界面直观、工作流及向导易于理解,因而对于那些在AI或图像处理和应用编程方面还没有太多经验的用户来说,门槛大大降低。尽管如此,AI视觉需要对有效训练所需的合适视觉材料有一定的了解。这是得出可信结论的先决条件,用户能够以可理解的方式对这些结论进行评估。同样重要的是,引入经验丰富的合作伙伴后,他们不仅可以使人工智能系统达到最佳状态,还能够查看并支持基于机器学习的质量保证的整个工作流程。由一个服务来源提供充分支持也是保障AI视觉环境成功的因素之一,应该予以充分重视。因此,AI视觉用于质量保证可能不像宣传的那么简单,但肯定比通常认为的更简单。

5e1a881c-00d9-11ee-ba01-dac502259ad0.gif

07 虹科NXT智能相机

主要特点:

图像处理“边缘设备”的嵌入式解决方案

降低网络负载,减少能耗

开发您的专属视觉应用,将应用安装在相机上

推理时间短

提供不同的保护等级和传感器

适合任何检测和分类应用

小体积,重量轻

08 虹科NXT lighthouse AI训练平台

#

完整工作流程

虹科 NXT lighthouse是一个基于云的AI视觉工作站,用于管理和注释图像数据集、训练神经网络并基于它们创建图像处理应用。因此,AI视觉任务可以通过一个云服务得到充分开发和解决。

#

流程简单

几分钟内搭建人工神经网络。只需关键的三步:用户上传训练图像,标记这些图像,然后训练目标网络。

#

即时可用

只需调用Web应用程序,然后登录,您就可以开始训练人工神经网络。无需创建单独的开发环境,可以直接使用所有功能以及所需的基础结构。

#

非常安全

可以选择在微软Azure或AWS(亚马逊网络服务)上托管和运行IDS lighthouse。这两种云服务都将客户和应用程序的数据存储在严格安全的数据中心

#

适合您的选择

用户自行决定 NXT相机的推理速度和准确度。推理时间为15到120毫秒。

#

简易应用开发

借助模块化编辑器,即使没有编程知识,也可以使用机器学习方法创建单独的图像处理序列,例如对象的检测或分类。作为Vision应用,这些过程可以直接在NXT设备上执行。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 检测
    +关注

    关注

    5

    文章

    4480

    浏览量

    91440
  • AI
    AI
    +关注

    关注

    87

    文章

    30728

    浏览量

    268872
收藏 人收藏

    评论

    相关推荐

    工业AI视觉检测项目实施第四步:工厂验收

    在当今智能制造的洪流中,AI视觉检测技术凭借高效与精准,已跃升为提高产品质量和生产效率的关键利器。为了助力从业者更好地理解和实施
    的头像 发表于 12-09 16:56 161次阅读
    工业<b class='flag-5'>AI</b><b class='flag-5'>视觉</b><b class='flag-5'>检测</b>项目实施第四步:工厂验收

    友思特方案 瞬时纠错的智慧算法:锂电与半导体多类型视觉检测助力高效高质生产

    为新能源锂电行业赋能第三站:丰富智慧的多类型视觉检测系统!锂电行业产线检测效率和准确性决定了生产的投产比与产品的出货质量。友思特针对多种需求开发了针对性的相机&
    的头像 发表于 12-05 13:41 133次阅读
    友思特方案 瞬时纠错的智慧算法:锂电与半导体多类型<b class='flag-5'>视觉</b><b class='flag-5'>检测</b><b class='flag-5'>助力</b>高效高质生产

    汽车行业AI视觉检测(下):创新驱动品质提升

    在上篇文章中,我们了解了汽车行业进行视觉检测的现有难点,以及升级AI的困局,并且利用差速器螺栓涂胶质量检测与发动机装配
    的头像 发表于 11-30 01:04 192次阅读
    汽车行业<b class='flag-5'>AI</b><b class='flag-5'>视觉</b><b class='flag-5'>检测</b>(下):创新驱动品质提升

    AI干货补给站04 | 工业AI视觉检测项目实施第三步:模型构建

    在当今智能制造的浪潮中,AI视觉检测技术凭借其高效、精准的特性,已然成为提升产品质量和生产效率的重要工具。为了助力从业者更好地理解和实施
    的头像 发表于 11-29 01:04 168次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>干货</b>补给站04 | 工业<b class='flag-5'>AI</b><b class='flag-5'>视觉</b><b class='flag-5'>检测</b>项目实施第三步:模型构建

    AI干货补给站03 | 工业AI视觉检测项目实施第二步:数据收集

    阿丘科技「AI干货补给站」推出系列文章——《工业AI视觉检测项目入门指南》,这一系列内容将AI
    的头像 发表于 11-22 01:06 195次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>干货</b>补给站03 | 工业<b class='flag-5'>AI</b><b class='flag-5'>视觉</b><b class='flag-5'>检测</b>项目实施第二步:数据收集

    AI学堂首播丨一节课详解AI检测系统开发全流程

    阿丘科技全新推出AI视觉培训直播课,助力工程师提升AI视觉实战技能,紧跟前沿技术。本次课程特邀资深AI
    的头像 发表于 11-06 08:03 183次阅读
    <b class='flag-5'>AI</b>学堂首播丨一节课详解<b class='flag-5'>AI</b><b class='flag-5'>检测</b>系统开发全流程

    AI干货补给站 | 深度学习与机器视觉的融合探索

    在智能制造的浪潮中,阿丘科技作为业界领先的工业AI视觉平台及解决方案提供商,始终致力于推动AI+机器视觉技术的革新与应用。为此,我们特别开设了「AI
    的头像 发表于 10-29 08:04 220次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>干货</b>补给站 | 深度学习与机器<b class='flag-5'>视觉</b>的融合探索

    光源---助力工业相机在视觉检测中的应用

    工业光源可提高图像质量,在视觉检测中事半功倍,光学类型比较多,根据不同的场景,选择合适的光源,提高检测效率。
    发表于 10-18 16:38 0次下载

    视觉检测系统与AI相机助力罐装食品瓶盖缺陷检测,精准剔除不良品!

    产品封装的重要组成部分,其质量直接关系到产品的整体形象和消费者体验。因此,如何高效、准确地检测瓶盖质量,成为摆在生产企业面前的一大难题。本文剖析了传统人工检测的弊端,并介绍了一种是
    的头像 发表于 09-24 14:30 156次阅读
    <b class='flag-5'>视觉</b><b class='flag-5'>检测</b>系统与<b class='flag-5'>AI</b>相机<b class='flag-5'>助力</b>罐装食品瓶盖缺陷<b class='flag-5'>检测</b>,精准剔除不良品!

    机器视觉在焊接质量检测中的应用

    焊接作为连接不同材料的关键工艺,其质量直接影响到结构的强度和可靠性。随着工业技术的发展,如何高效、精准地检测焊接质量,成为了工业制造领域急需解决的问题。机器视觉技术的引入,为焊接
    的头像 发表于 08-13 16:33 255次阅读

    助力高通全景式呈现智能汽车解决方案

    2024高通汽车技术与合作峰会在无锡隆重举办,高通携手百余家汽车及相关产业领军企业汇聚一堂,共绘智能网联汽车发展新蓝图。软受邀参会参展,携多款前沿科技与车载AI应用亮相峰会,助力高通全景式呈现智能
    的头像 发表于 06-03 17:37 872次阅读

    阿丘科技:生成式AI与行业视觉大模型驱动工业AI视觉2.0

    5月21日,阿丘科技CEO黄耀应邀参加北京机器视觉助力智能制造创新发展大会,并发表《AI+工业视觉探索与展望》主题演讲,下文根据黄耀先生的主题演讲主要内容撰写而成。可点击文末“阅读原文
    的头像 发表于 05-25 08:25 759次阅读
    阿丘科技:生成式<b class='flag-5'>AI</b>与行业<b class='flag-5'>视觉</b>大模型驱动工业<b class='flag-5'>AI</b><b class='flag-5'>视觉</b>2.0

    AIDI工业AI视觉检测软件介绍

    AIDI是一款基于深度学习的智能工业视觉平台应用于多种工业应用场景,有效解决复杂缺陷的定位识别、分类定级及字符识别等问题,具有强大的兼容性。AIDI 内置多种应用模块,无需编程,帮助用户快速构建和迭代模型,满足不同业务场景下的差异化需求,助力产业智能化升级。
    发表于 03-25 21:52

    提高生产效率!MSR165快速检测机器故障,实现精准优化

    MSR165数据记录仪是机械制造领域的利器,能够快速、准确地检测机器故障。通过记录各种振动指纹并在计算机上进行综合分析,MSR165
    的头像 发表于 03-08 11:17 471次阅读
    提高生产效率!<b class='flag-5'>虹</b><b class='flag-5'>科</b>MSR165快速<b class='flag-5'>检测</b>机器故障,实现精准优化

    数字化与AR部门升级为安宝特AR子公司

    致关心AR的朋友们: 感谢您一直以来对数字化与AR的支持和信任,为了更好地满足市场需求和公司发展的需要,
    的头像 发表于 01-26 15:34 483次阅读
    <b class='flag-5'>虹</b><b class='flag-5'>科</b>数字化与AR部门升级为安宝特AR子公司