1 支持的JSON数据选项介绍-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

支持的JSON数据选项介绍

jf_pJlTbmA9 来源:NVIDIA 作者:NVIDIA 2023-07-05 16:30 次阅读

JSON 是一种广泛采用的基于文本的信息格式,可在系统之间互操作,最常见于 web 应用程序。虽然 JSON 格式是人类可读的,但使用数据科学和数据工程工具处理它很复杂。

为了弥补这一差距, RAPIDS cuDF 提供了一个 GPU 加速的 JSON 读取器( cudf.read_json ),该读取器对于许多 JSON 数据结构都是高效和健壮的。 JSON format 指定了一种通用的树状数据结构, cuDF 实现了算法,可以轻松地将 JSON 树转换为柱状数据。

cuDF 是一个 GPU DataFrame 库,用于在 Python 中加载、连接、聚合、过滤和以其他方式操作数据。当 JSON 数据被构造为柱状数据时,它可以访问强大的 cuDF DataFrame API 。我们很高兴能够通过本读者打开 GPU 加速到更多数据格式、项目和建模工作流的可能性。

本文重点介绍了支持的 JSON 数据选项:面向记录的 JSON 和 JSON 行。以下是几个 cuDF 读取器选项的示例,用于处理具有字节范围或多个源的 JSON 行文件。最后,您将学习如何使用 cuDF 中的工具来展平 cuDF 中的列表和结构类型,以及如何应用这些工具从常见的 JSON 模式组装 DataFrame 。

在 cuDF 中读取 JSON 数据

默认情况下, cuDF JSON 读取器需要使用 records 方向的输入数据。面向记录的 JSON 数据由根级别的对象数组组成,数组中的每个对象对应一行。对象中的字段名决定表的列名。

JSON 数据的另一个常见变体是 JSON 行,其中 JSON 对象由换行符(n)分隔,每个对象对应一行。

以下代码示例显示了面向记录的 JSON 以及 JSON 行数据:

>>> j = '''[
... {"a": "v1", "b": 12},
... {"a": "v2", "b": 7},
... {"a": "v3", "b": 5}
... ]'''
>>> df_records = cudf.read_json(j)

>>> j = 'n'.join([
...     '{"a": "v1", "b": 12}',
...     '{"a": "v2", "b": 7}',
...     '{"a": "v3", "b": 5}'
... ])
>>> df_lines = cudf.read_json(j, lines=True)

>>> df_lines
    a   b
0  v1  12
1  v2   7
2  v3   5
>>> df_records.equals(df_lines)
True

cuDF JSON 读取器还与嵌套的 JSON 对象和数组兼容,这些对象和数组大致映射到结构和列表 data types in cuDF 。

以下示例演示了用于生成列表和结构列以及数据类型为列表和结构的任意组合的列的输入和输出。

# example with columns types:
# list and struct
>>> j = '''[
... {"list": [0, 1, 2], "struct": {"k": "v1"}}, 
... {"list": [3, 4, 5], "struct": {"k": "v2"}}
... ]'''
>>> df = cudf.read_json(j)
>>> df
        list       struct
0  [0, 1, 2]  {'k': 'v1'}
1  [3, 4, 5]  {'k': 'v2'}

# example with columns types: 
# list> and struct, m:int>
>>> j = 'n'.join([
...     '{"a": [{"k": 0}], "b": {"k": [0, 1], "m": 5}}',
...     '{"a": [{"k": 1}, {"k": 2}], "b": {"k": [2, 3], "m": 6}}',
... ])
>>> df = cudf.read_json(j, lines=True)
>>> df
                      a                      b
0            [{'k': 0}]  {'k': [0, 1], 'm': 5}
1  [{'k': 1}, {'k': 2}]  {'k': [2, 3], 'm': 6}

处理大小 JSON 行文件

对于基于 JSON Lines 数据的工作负载, cuDF 包括帮助数据处理的读取器选项:大文件的字节范围支持和小文件的多源支持。

字节范围支持

一些工作流,如欺诈检测和用户行为建模,需要处理可能超过 GPU 内存容量的大型 JSON Line 文件。

cuDF 中的 JSON 读取器支持字节范围参数,该参数指定起始字节偏移量和字节大小。读取器解析在字节范围内开始的每个记录,因此,字节范围不必与记录边界对齐。

在分布式工作流中,字节范围使每个工作人员能够处理数据的子集。在过滤和聚合中,字节范围允许单个工作人员以块的形式处理数据。

为了避免跳过行或读取重复的行,字节范围应该相邻,如下例所示。

>>> num_rows = 10
>>> j = 'n'.join([
...     '{"id":%s, "distance": %s, "unit": "m/s"}' % x 
...     for x in zip(range(num_rows), cupy.random.rand(num_rows))
... ])
>>> chunk_count = 4
>>> chunk_size = len(j) // chunk_count + 1
>>> data = []
>>> for x in range(chunk_count):
...     d = cudf.read_json(
...         j,        
...         lines=True, 
...         byte_range=(chunk_size * x, chunk_size)
...     )
...     data.append(d)    
>>> df = cudf.concat(data)

多源支持

相比之下,一些工作流需要处理许多小的 JSON 行文件。

cuDF 中的 JSON 读取器接受数据源列表,而不是循环通过源并连接生成的 DataFrame 。然后将原始输入作为单个源进行有效处理。

cuDF 中的 JSON 读取器接受源作为文件路径、原始字符串或类似文件的对象,以及这些源的列表。

>>> j1 = '{"id":0}n{"id":1}n'
>>> j2 = '{"id":2}n{"id":3}n'
>>> df = cudf.read_json([j1, j2], lines=True)

解包列表和结构数据

将 JSON 数据读入带有列表和结构列类型的 cuDF DataFrame 后,许多工作流的下一步是将数据提取或展平为简单类型。

对于结构列,一种解决方案是使用struct.explode访问器提取数据,并将结果连接到父 DataFrame 。

下面的代码示例演示如何从结构列中提取数据。

>>> j = 'n'.join([
...     '{"x": "Tokyo", "y": {"country": "Japan", "iso2": "JP"}}',
...     '{"x": "Jakarta", "y": {"country": "Indonesia", "iso2": "ID"}}',
...     '{"x": "Shanghai", "y": {"country": "China", "iso2": "CN"}}'
... ])
>>> df = cudf.read_json(j, lines=True)
>>> df = df.drop(columns='y').join(df['y'].struct.explode())
>>> df
          x    country iso2
0     Tokyo      Japan   JP
1   Jakarta  Indonesia   ID
2  Shanghai      China   CN

对于元素顺序有意义的列表列,list.get访问器从特定位置提取元素。然后,可以将生成的cudf.Series对象分配给 DataFrame 中的新列。

下面的代码示例演示如何从列表列中提取第一个和第二个元素。

>>> j = 'n'.join([
...     '{"name": "Peabody, MA", "coord": [42.53, -70.98]}',
...     '{"name": "Northampton, MA", "coord": [42.32, -72.66]}',
...     '{"name": "New Bedford, MA", "coord": [41.63, -70.93]}'
... ])
>>> df = cudf.read_json(j, lines=True)
>>> df['latitude'] = df['coord'].list.get(0)
>>> df['longitude'] = df['coord'].list.get(1)
>>> df = df.drop(columns='coord')
>>> df
              name  latitude  longitude
0      Peabody, MA     42.53     -70.98
1  Northampton, MA     42.32     -72.66
2  New Bedford, MA     41.63     -70.93

最后,对于长度可变的列表列,explode方法将创建一个新的 DataFrame ,每个列表元素作为一行。将分解的 DataFrame 连接到父 DataFrame 上会产生一个具有所有简单类型的输出。

以下示例展平列表列,并将其连接到父 DataFrame 中的索引和其他数据。

>>> j = 'n'.join([
...     '{"product": "socks", "ratings": [2, 3, 4]}',
...     '{"product": "shoes", "ratings": [5, 4, 5, 3]}',
...     '{"product": "shirts", "ratings": [3, 4]}'
... ])
>>> df = cudf.read_json(j, lines=True)
>>> df = df.drop(columns='ratings').join(df['ratings'].explode())
>>> df
  product  ratings
0   socks        2
0   socks        4
0   socks        3
1   shoes        5
1   shoes        5
1   shoes        4
1   shoes        3
2  shirts        3
2  shirts        4

使用 cuDF 构建 JSON 数据解决方案

有时,工作流必须使用对象根处理 JSON 数据。 cuDF 提供了为此类数据构建解决方案的工具。要使用对象根处理 JSON 数据,我们建议将数据作为单个 JSON 行读取,然后拆包生成的 DataFrame 。

以下示例将 JSON 对象作为单行读取,然后将“ results ”字段提取到新的 DataFrame 中。

>>> j = '''{
...     "metadata" : {"vehicle":"car"},
...     "results": [
...         {"id": 0, "distance": 1.2},
...         {"id": 1, "distance": 2.4},
...         {"id": 2, "distance": 1.7}
...     ]
... }'''

# first read the JSON object with lines=True
>>> df = cudf.read_json(j, lines=True)
>>> df
             metadata                                            records
0  {'vehicle': 'car'}  [{'id': 0, 'distance': 1.2}, {'id': 1, 'distan...

# then explode the 'records' column 
>>> df = df['records'].explode().struct.explode()
>>> df
   id  distance
0   0       1.2
1   1       2.4
2   2       1.7

关键要点

cuDF JSON 读取器旨在加速广泛的 JSON 数据工作负载,包括跨大文件和小文件的简单和复杂类型。

这篇文章演示了 cuDF JSON 读取器与面向记录和 JSON 行数据的常见用法,以及展示字节范围和多源支持。现在,您可以加快处理 JSON 数据的方式,并将 JSON 数据有效地结合到工作流中。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    4978

    浏览量

    102987
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4729

    浏览量

    128890
  • AI
    AI
    +关注

    关注

    87

    文章

    30728

    浏览量

    268886
收藏 人收藏

    评论

    相关推荐

    JSON 数据格式

    本帖最后由 windworld 于 2016-3-30 14:48 编辑 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。JSON采用完全独立
    发表于 03-30 14:48

    怎么支持PIC32中的JSON解析和序列化

    我正在寻找支持或库,允许我将JSON对象序列化为char数组,并将char数组/字符串解析为JSON对象。我查看了JSMN库,但它看起来只是解析,而不是序列化。我目前在ARDUINO板上
    发表于 11-28 16:46

    Django怎么输出Json数据

    Django如何输出Json数据
    发表于 05-27 14:06

    json数据解析

    json解析,上篇已经GET到了天气状况,是json数据,解析一下看api先是构造json再是解析json
    发表于 01-12 08:15

    android使用JSON进行网络数据交换

    本文将快速讲解 JSON 格式,并通过代码示例演示如何分别在客户端和服务器端进行 JSON 格式数据的处理。 什么是JSON
    发表于 12-04 11:51 0次下载

    java生成json格式数据 和 java遍历json格式数据

    本文档内容介绍了基于java生成json格式数据 和 java遍历json格式数据,供参考
    发表于 03-19 15:04 0次下载

    PHP如何返回json格式的数据给jquery的详细资料说明

     json格式的数据是我们在应用开发中一直会使用到的数据,如与jquery打交到或与API打交都会使用到json数据,那么PHP如何返回
    发表于 03-22 15:24 7次下载
    PHP如何返回<b class='flag-5'>json</b>格式的<b class='flag-5'>数据</b>给jquery的详细资料说明

    面向NoSQL数据库的JSON文档异常检测模型

    数据库常用的数据存储格式,JSON因简单性和灵活性备受欢迎。然而,NoSαL数据库缺乏模弌信息,在JSON文档存入
    发表于 04-13 15:30 20次下载
    面向NoSQL<b class='flag-5'>数据</b>库的<b class='flag-5'>JSON</b>文档异常检测模型

    什么是JSON劫持 JSON和XML的区别

    什么是JSON劫持 单从字面上就可以理解的出来,JSON是一种轻量级的数据交换格式,而劫持就是对数据进行窃取(或者应该称为打劫、拦截比较合适。恶意攻击者通过某些特定的手段,将本应该返回
    的头像 发表于 08-05 10:09 1545次阅读

    什么是JSON JSON的语法规则

    JSON数据交换格式 JSON(JavaScript Object Notation, JS 对象简谱) 是一种轻量级的数据交换格式。它基于 ECMAScript (欧洲计算机协会制定
    的头像 发表于 08-25 15:40 2642次阅读

    645仪表以JSON格式上发方法

    之前我们已经介绍了Modbus RTU仪表实现JSON格式上发云服务器的方法,类似的现在也可以支持645协议的仪表通过JSON格式上发服务器。
    的头像 发表于 12-02 14:11 908次阅读
    645仪表以<b class='flag-5'>JSON</b>格式上发方法

    怎么用C+JS结构来处理JSON数据

    在物联网产品的开发过程中,对JSON格式的数据处理是一个强需求,例如亚马逊的 AWS IOT平台,设备与后台之间的通讯数据都是JSON格式,
    的头像 发表于 02-14 13:46 770次阅读
    怎么用C+JS结构来处理<b class='flag-5'>JSON</b><b class='flag-5'>数据</b>?

    如何利用Python和pandas来处理json数据

    在实际工作中,尤其是web数据的传输,我们经常会遇到json数据。它不像常见的文本数据、数值数据那样友好,而且它和Python中的字典类型
    的头像 发表于 11-01 10:59 2355次阅读
    如何利用Python和pandas来处理<b class='flag-5'>json</b><b class='flag-5'>数据</b>

    什么是JSON数据

    如何理解JSON数据库?作为NoSQL数据库的一种类型,JSON数据库有哪些优势呢?JSON
    的头像 发表于 12-02 08:04 863次阅读
    什么是<b class='flag-5'>JSON</b><b class='flag-5'>数据</b>库

    关于JSON数据

    如何理解JSON数据库?作为NoSQL数据库的一种类型,JSON数据库有哪些优势呢?JSON
    的头像 发表于 12-06 13:46 867次阅读
    关于<b class='flag-5'>JSON</b><b class='flag-5'>数据</b>库