1 传感器模块电源效率创新 推动未来AI系统演进-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

传感器模块电源效率创新 推动未来AI系统演进

jf_pJlTbmA9 来源:jf_pJlTbmA9 作者:jf_pJlTbmA9 2023-07-13 16:32 次阅读

当前,消费级、医疗、工业智能监测设备迎来爆炸性增长。随着这些设备越来越智能,逐步承担起环境和人的主动监测功能,并实时提供预测性响应,包括告警、执行或推荐操作等等。不过,智能响应的优劣,很大程度上依赖于内置传感器所收集数据的精度和广度。由此,传感器的更新迭代变得尤为关键。

对于传感器应用设计工程师来说,如何利用有限的产品空间布局最小化的传感器模块,同时保持高精度并延长电池寿命,是面临的巨大挑战。为了解决挑战,一般有两种应对思维:一是最大化元器件和系统操作的能效比,一是投资研发新型低功耗架构。在ADI看来,第一种方法致力于开发依靠电池工作更长时间并提供更高响应度和精度的系统,有望帮助设计人员在短期内实现其目标,相较下会更为简单直接。

最大化电源效率

一般来说,智能设备中传感器是由系统电源、传感器、传感器信号放大和信号处理四个基本模块组成。选择合适的器件对于最大化传感器模块的电池寿命至关重要。那么如何优化上述四大模块,来提高电源效率并提供更精确的测量呢?

●传感器选择

第一个考虑是传感器。当今传感器模块中使用的传感器主要有两种类型:单端传感器和差分传感器。单端传感器包括用于血糖检测的电化学传感器、气体传感器和可穿戴医疗传感器。差分传感器通常使用仪器放大器,应用包括工业压力或力传感器、工业温度传感器、医疗应用中的线内空气(air-inline)和阻塞传感器等。这些在医用胰岛素泵和线内空气探测器中很常见。

更常见的传感器类型是电化学传感器。这些是低功耗传感器,包括血糖传感器,数以百万计的糖尿病患者使用这种传感器控制其血糖水平。其他应用包括气体传感器(例如二氧化碳(CO2)传感器)、水质(电导率、pH值等)传感器、用于机油降解的酒精传感器以及检测爆炸物的传感器。

电化学传感器的大多数应用是便携式和电池供电应用。虽然家庭CO2传感器一般可正常使用五到七年,但大约每六个月至一年便可能需要更换新电池。为了延长电池寿命,制造商使用最新的低功耗器件,这些器件从电池消耗的电流量极小。

接下来,以一种具体类型的电化学传感器——乙醇传感器为例,来了解其工作原理

●乙醇传感器工作原理

乙醇传感器是一种安培法气体传感器,其产生的电流与气体的体积分数成正比。它是一种三电极器件,乙醇在工作(或检测)电极(WE)上测量。对电极(CE)使电路完整,而参考电极(RE)在电解质中提供稳定的电化学电位,它不接触乙醇。对于SPEC传感器,将+600mV偏置电压施加于RE。

很多电化学传感器需要固定的偏置才能正常工作,这给电池寿命带来了额外负担。由此必须考虑系统的电源要求。

●电源要求

系统的功率预算及其电池容量,最终决定了传感器的工作寿命。小尺寸电池供电解决方案的典型目标是使用单节1.5V电池。使用单节电池会降低容量,从而影响传感器的工作寿命。那么,可以采取什么措施来优化单节电池的工作寿命?

当充满电时,即在其寿命开始时,单节电池为1.5V。此电压随着时间推移而逐渐下降,在寿命结束时为0.9V。为了最大程度地延长单节电池的寿命,应用必须在0.9V至1.5V之间运行,才能获得最长的应用工作时间。由于其他系统器件以1.8V运行,因此必须选择一个DC-DC升压转换器,它应能最大程度地提高工作和待机电流效率,并能在0.9V至1.5V范围内运行。

拥有95%的高效率不是高效电源转换的唯一考虑因素。升压调节器还必须能够在宽电流范围内高效工作,从而降低静态电流(IQ)和工作过程中的热量耗散。应用大部分时间处于待机模式,因此升压转换器在轻载待机状态下必须具有高效率,以延长电池寿命。关断特性通过关闭部分电路将电流消耗降至nA级范围,这也能大幅降低功耗。

●信号链解决方案

传感器产生的输出信号通常很微弱,只有几uV,而模数转换器需要V级的信号。因此,选择低功耗、高精度放大器是设计中第二重要的考虑因素。

低功耗放大器有两个重要方面——电流消耗和工作电压,因为许多传感器需要偏置电流以维持精度。这要求应用的传感器部分开启以保持准确的读数。此外,0.9V至1.5V的低工作电压支持单节电池供电,无需升压转换器。

通常,选择低功耗放大器的缺点是精度较低。但是,存在一些低功耗放大器,即使在低工作电流和电压下,它们也能保持很高的精度水平。精密放大器的一些特性包括:亚微伏(µV)输入失调电压、nV/℃级的电压漂移以及pA级的输入偏置电流。

低功耗微控制器与集成ADC相结合,可提供一种低功耗传感器解决方案,它能在最大化电池寿命的同时使应用保持小尺寸。

乙醇传感器解决方案的测量

除了器件级别的改进之外,还可以优化系统架构,在相同的精密测量水平下实现更低的功耗。为了证明这一点,ADI对使用相似器件的乙醇传感器解决方案进行了两次实验测量,并对未来传感器解决方案展开了一次理论测量,后者显示出节省电能的优势。

该实验使用下面列出的器件,对于乙醇电化学传感器测量,这些器件具有相同的占空比。

SPEC电化学乙醇传感器

MAX40108 1V精密运算放大器/1.8V运算放大器

MAX17220 0.4-5.5V nanoPower同步升压转换器,提供True Shutdown™

MAX6018A 1.8V精密、低压差基准电压源

MAX32660 1.8V超低功耗Arm® Cortex®-M4处理器

单节1.5V AA电池

● 传统1.8V系统

1.8V系统解决方案使用单节电池供电,利用高效的升压转换器为乙醇传感器、运算放大器和带ADC的微处理器提供1.8V系统电源。0.1%活动的占空比由微控制器控制,微控制器唤醒后进行测量,然后又回到睡眠模式。

1658462376532739.jpg

图1.传统1.8V传感器系统解决方案

待机模式下的传感器利用升压转换器维持睡眠模式下传感器、运算放大器和微控制器的电源。在待机状态下,该系统消耗150.8µA的电流。在活动状态期间,微控制器唤醒并进行传感器测量。在活动状态下,该系统短时间消耗14mA。活动状态仅占0.1%的时间,经计算可知,活动和待机模式合并的平均电流为164µA,这是实际传感器应用的典型值。

●1V放大器系统

在1V放大器解决方案中,SPEC乙醇传感器和MAX40108 1V运算放大器均直接连接到电池。这需要一个能以低至0.9V的电压工作、保持高精度水平并最大化单节电池使用寿命的放大器。

1658462345118584.jpg

图2.新一代1V放大器传感器解决方案

其余电路与为微控制器供电并支持1.8V电路的升压调节器类似。在这种配置中,电流大幅减少到81.9µA,降幅为45%;平均电流减少到95.7µ A,降幅为41.79%。结果,使用MAX40108 1V运算放大器的系统的电池寿命几乎是传统系统的两倍。

●未来的1V信号链系统

在未来的1V信号链解决方案中,放大器、ADC和微控制器均以低至0.9V的电压工作,同时保持高精度水平。这使得整个信号链解决方案都可以由单节电池供电,从而无需升压转换器,传感器解决方案的电池寿命得以最大化。

1658462319987690.jpg

图3.未来的1V传感器系统解决方案

结论

人们对智能AI系统的需求日益增加,并激发了对具有额外功能、更高精度和更长寿命的传感器需求。传感器必须提供小尺寸解决方案,既可以由人佩戴,也可以联网,从而确定一个人、生产车间、建筑物或城市的健康状况,使系统能够积极主动响应,而不是被动应对。更进一步,对于那些受益于新一代AI系统的人而言,主动响应可改善健康状况、降低成本、提高生产率并增强安全性。

如今,在赋能AI系统的传感器网络中,创新正在不同领域层面上悄然萌发。尤其是以ADI为代表的IC制造商们,通过开发更低功耗的传感器构建模块,将切实推动工程师构建起更智慧、更高效的崭新系统。

责任编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2550

    文章

    51034

    浏览量

    753036
  • AI
    AI
    +关注

    关注

    87

    文章

    30726

    浏览量

    268870
  • 模块电源
    +关注

    关注

    2

    文章

    200

    浏览量

    24331
收藏 人收藏

    评论

    相关推荐

    数字模块电源将走出实验室

      数字电源技术的发展正在推动模块电源的数字化发展趋势,国际领先的模块电源厂商正在加强此类技术和产品的研发。目前有三种方案:低价格、功能少的低成本DC/DC方案;全数字化、功能齐备的方
    发表于 01-08 15:00

    物联网推动电源效率、测试策略和创新步入新高

    克非常看重电源行业中的工程师需求?Seshank:由于互联无处不在,人们对更高效率的需求一直在呈指数级增长。随着物联网(IoT)的兴起,越来越多的设备实现了无线联网,数量庞大的物联网传感器和器件需要
    发表于 06-14 14:28

    iPhone的传感器演进

    最近一段时间我把苹果这十年的 iPhone 发布会都看了一遍,目的只有一个,就是研究 iPhone 在传感器使用上的演进。所谓传感器(Sensor),就是能够感知周围环境并输出电信号的元器件。像
    发表于 07-29 06:34

    AI时代推动存储创新与发展

    AI 时代的计算应用,了解它们如何在未来蓝图中推动创新
    发表于 01-19 07:48

    IoT是怎样推动传感器创新的?求解

    IoT是怎样推动传感器创新的?求解
    发表于 05-21 07:15

    模块电源参数参考

    DC/DC 1-700W 模块电源AC/DC 3-150W 模块电源DC/AC 3-40W  铃流模块
    发表于 06-28 23:26 13次下载

    模块电源灌封简介

    模块电源灌封简介 模块电源的灌封是很重要的,这一工艺不仅涉及到模块电源的防护(防水,防潮,防尘,防腐蚀等),还涉及到模块电源的热设计. 
    发表于 05-11 09:11 2043次阅读

    模块电源的噪声测试技巧介绍

    随着半导体工艺和封装技术的改进,高频软开关技术的大量应用,模块电源的功率密度越做越高,模块电源的功率变换效率也越来越高,体积越来越小,出现了芯片级的模块电源
    发表于 01-15 10:56 1775次阅读

    模块电源的噪声测试技巧

    的功率密度越做越高,模块电源的功率变换效率也越来越高,体积越来越小,出现了芯片级的模块电源模块电源普遍用于交流设备、接入设备、挪动通讯、微波通讯以及光传输、路由
    发表于 12-07 17:36 576次阅读

    µ模块电源产品

    µ模块电源产品
    发表于 05-10 19:08 11次下载
    µ<b class='flag-5'>模块电源</b>产品

    基于PPEC的PSM模块电源应用分享

    PSM电源今天为大家分享的是森木磊石利用PPEC产品开发的PSM模块电源。该电源具有效率高、功率器件温升低、输出特性好、可靠性高等特点。PSM电源
    的头像 发表于 09-16 10:33 1313次阅读
    基于PPEC的PSM<b class='flag-5'>模块电源</b>应用分享

    怎样做好模块电源外围电路的EMC与防护设计呢?

    是几点关于如何做好模块电源外围电路的EMC与防护设计的建议。 1. 选择合适的元件 EMC和防护设计的第一步是选择合适的元件。包括滤波、变压传感器、保险丝和连接
    的头像 发表于 10-23 09:46 985次阅读

    对于变频模块电源我们要如何选择?

    对于变频模块电源我们要如何选择? 变频模块电源是用于给变频供电的电源设备。它的选择对于变频的性能和稳定性至关重要。在选择变频
    的头像 发表于 11-16 11:17 848次阅读

    航空模块电源的电磁兼容性(EMC)设计

    模块电源是飞机关键系统,提供稳定电力,具有高可靠性、高效率模块化及智能化管理特点,广泛应用于驾驶舱、客舱娱乐及通信系统
    的头像 发表于 11-17 14:12 237次阅读

    模块电源的特点及应用

    ,使用时根据各自需要不外接或外接少量分立元件就可完成设计任务,令电源设计更简单。以模块电源取代分立元件设计方案,好比用微处理代替集成块设计电子线路一样,可更加灵活快捷地完成系统设计及
    的头像 发表于 12-19 09:15 139次阅读
    <b class='flag-5'>模块电源</b>的特点及应用