汽车电源系统常在极为恶劣的环境下运行,数以百计的负载挂在汽车电池上,需要同时确定负载状态的汽车电池可能面临极大的挑战。当负载处于不同工作条件和潜在故障状态时,设计人员需要考虑电源线产生的各种脉冲可能带来的影响。我们将介绍汽车电源线上的各种脉冲干扰,然后讨论防反保护电路的常见类型,并重点关注PMOS电路。
脉冲干扰
图 1显示了不同应用场景下电源线上可能出现的各种脉冲类型。例如,当大功率负载突然关闭,电池电压可能产生过冲;当大功率负载突然启动,电池电压将会跌落。当感应线束突然松动,负载上将产生负电压脉冲。而发电机运行时,交流纹波会叠加在电池上。还有使用跳线时,备用电池可能使用错误,从而导致极性反接,此时电池电压极性长时间反接。
图1: 不同应用场景下的脉冲类型
为解决汽车电源线上可能存在的各种脉冲干扰,行业协会和主要汽车制造商已经制定了相关的测试标准来vwin 电源线的瞬态脉冲。这些标准包括 ISO 7637-2和 ISO 16750-2,以及梅赛德斯-奔驰和大众汽车的测试标准。防反保护电路作为最前端的电路,也必须满足行业测试标准。
防反保护电路
防反保护电路包括三种基本类型,如下所述。
这种电路通常用于 2A 至 3A 之间的小电流应用,其电路简单且成本低,但功耗较大。
在高边串联PMOS
对于电流超过 3A 的应用,可以将PMOS放置在高边。这种驱动电路相对简单,但缺点是PMOS成本较高。
当电源正接时,PMOS沟道导通,管压降小,损耗和温升低。
当电源反接时,PMOS沟道关断,寄生体二极管实现防反保护功能。
在低边串联NMOS
这种电路需要在低边放置一个 NMOS。简化的栅极驱动电路通常会采用高性价比的 NMOS。该电路的功能类似于放置在高边的PMOS。但是,这种防反保护结构意味着电源地和负载地是分开的,这种结构在汽车电子产品设计中很少使用。
图 2 对这几种防反保护电路进行了总结。
图 2:防反保护电路的类型
本文将重点介绍PMOS防反保护电路。
PMOS
大多数传统的防反保护电路均采用 PMOS,其栅极接电阻到地。如果输入端连接正向电压,则电流通过 PMOS 的体二极管流向负载端。如果正向电压超过PMOS的电压阈值,则通道导通。这降低了 PMOS 的漏源电压 (VDS),从而降低了功耗。栅极与源极之间通常会连接一个电压调节器,以防止栅源电压 (VGS)出现过压情况,同时还可以保护 PMOS在输入功率波动时不会被击穿。
但基本的 PMOS 防反保护电路也有两个缺点:系统待机电流大和存在反灌电流。下面将对此进行详述。
系统待机电流较大
当PMOS用于防反保护电路时, VGS 和保护电路(由齐纳二极管和限流电阻组成)周围会存在漏电流。因此,限流电阻 (R)会对整体待机功耗产生影响。
限流电阻的取值不应太大。一方面,普通稳压管的正常钳位电流基本为mA级,如果限流电阻过大,齐纳二极管不能可靠导通,钳位性能会明显降低,从而导致 VGS出现过压风险。另一方面,限流电阻太大意味着PMOS 驱动电流较小,这会导致较慢的开/关过程。如果输入电压(VIN)发生波动,PMOS可能会长时间工作在线性区域(在该区域的 MOSFET 未完全导通),由此产生的高电阻会导致器件过热。
图 3 显示了传统 PMOS 防反保护电路中的待机电流。
图 3:传统 PMOS 防反保护电路中的待机电流
存在反灌电流
在进行 ISO 16750 输入电压跌落测试时,PMOS 在 VIN
跌降时保持开路。在这种情况下,系统电容电压会使电源极性反转,从而导致系统电源故障并触发中断功能。而在叠加交流电输入电压测试中,由于 PMOS
完全开路,将导致电流回流。这会迫使电解电容反复充电和放电,最终导致过热。
图 4 显示了输入电压的跌落测试。
图 4:输入电压跌落测试
-
NMOS
+关注
关注
3文章
294浏览量
34345 -
脉冲
+关注
关注
20文章
889浏览量
95618 -
汽车电源系统
+关注
关注
0文章
6浏览量
1885
发布评论请先 登录
相关推荐
评论