1 人工智能赋能超构光子学研究-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能赋能超构光子学研究

MEMS 来源:MEMS 2023-07-17 11:06 次阅读

01

研究背景

超构光子学(Metaphotonics)由超构材料出发,从对负折射现象和超构透镜的好奇逐渐发展而来,能够利用以亚波长结构为构筑单元排列成的人工材料,突破传统材料的局限,实现新奇的光学现象,为完全控制光提供了更广泛深入的见解和更有用的工具。

人工智能(Artificial intelligence, AI)研究、vwin 和扩展以类人类智能的方式进行计算和完成复杂工作的系统及方法,已迅速融入各类学科的前沿研究中。对于超构光子学而言,人工智能技术可以实现多种光子学器件及系统的正向逆向设计、优化和大数据处理,有望广泛应用于三维显示、自动驾驶、传感、生物成像等领域。人工智能技术适用于对复杂的光与物质相互作用过程的分析和预测,将为正向逆向设计和海量数据分析提供了一种强有力的工具,将为未来智能光子设备赋能。

澳大利亚国立大学Yuri Kivshar院士俄罗斯ITMO的Sergey Krasikov博士所在的国际研究小组在其最新综述中,概述了智能超构光子学领域——人工智能和超构光子学交叉科学领域的进展,重点介绍了机器学习的基本原理和赋能超构光子学设计的具体应用案例。该综述的主要内容如下:

1.机器学习的基本概念:机器学习作为一种正向和逆向光子学器件和系统设计的工具,文章首先阐述了其基本概念,以一个人工神经网络(artificial neural network, ANN)辅助设计超构光子系统的例子体现出网络的总体设计逻辑和优势。

2.超构光子学中的超构系统、超构表面和纳米天线结构:介绍了超构光子学的基本概念,结合实例说明机器学习辅助纳米天线设计过程。进一步,重点介绍了变革性的超构表面及通过机器学习增强其特性的例子,如在吸收器、结构色、激光雷达(LiDAR)或近眼显示器方面的设计应用。

3. 超构表面作为化学生物传感平台的应用:机器学习在化学和生物传感领域不仅可以用作传感器优化设计方法,还可以作为样品分类的工具。列举了机器学习用于比色传感器优化、增强DNA寡聚体检测灵敏度、实时监测生物分子动力学、SARS-CoV-2分类等研究实例。

4.自适应智能超构系统:智能光子设备能够随着环境条件的变化自动调整其响应。例如,可根据电磁场频率和入射角的变化而自适应调整的“隐身斗篷”,可自动调整元件位置和方向的激光器智能控制系统。

5. 总结和展望:总结了人工智能辅助超构光子学设计的概念和进展,拓展性地介绍了该技术未来在拓扑光子学、高Q光学共振超构表面设计、光神经网络、生物启发性智能器件、光子突触、高维度优化等研究领域的潜在发展和挑战。

02

机器学习的基本概念

当今人工智能领域的大多数应用程序和设计都基于机器学习(machine learning, ML),机器学习的发展为人工智能的学习能力提供了一套数据驱动的算法。机器学习算法的目标是找到连接输入输出数据的数学模型,可完成包括分类、回归、聚类、异常检测和结构化预测等一系列任务,但特征提取过程往往消耗较大并且需要特定领域的专业知识。

深度学习(Deep learning, DL)是机器学习的一个子类,如图1所示。该方法基于人工神经网络的分层结构,以类似生物神经结构的的方式工作。与经典机器学习方法不同,深度学习的关键在于自动学习数据集特征,设计过程不需要掌握特定领域的知识即可得到输入输出间的映射关系。

c8be2454-2329-11ee-962d-dac502259ad0.jpg
图1 机器学习相关的不同概念间的关系 深度学习主要作为一种正向或逆向光子学设计的工具使用,如图2所示,数据集中特定结构的物理响应通过数值仿真或实验获得。正向设计预测给定结构的物理响应(如散射光谱、偏振等);逆向设计可确定提供目标响应所需的结构参数。深度学习实现了一种非模拟的而是数据驱动的近似模型替代,即可近似看作是一个结构和物理响应之间的功能映射黑盒。 c8e95e8a-2329-11ee-962d-dac502259ad0.jpg

图2 基于深度学习技术的正向和逆向设计

03

变革性的超构系统和超构表面设计

光学超构材料可以有效操控电磁波,展示出多种奇特的光学现象并有望代替部分传统光学元件和设备,进一步支持未来光子技术在高水平集成化、多功能、高性能的嵌入式数据处理和波导集成平台上的发展。因此,在超构光子学领域,研究和优化材料构建块(如纳米天线和超构表面)成为一项重要的工作。

文章首先介绍了利用机器学习方式设计纳米天线的过程和总体思路。以核壳结构的散射响应工程为例,如图3所示,通过训练网络达到正向预测纳米粒子的散射光谱或者逆向确定特定响应所需的材料和结构参数的目标。相较于传统的FDTD仿真,机器学习正向设计的速度快,预测准确度高,有望结合传统的数值仿真方式形成一种新型的计算工具实现实时远场响应设计。进一步,为解决深度学习中对大数据样本的需求,迁移学习(transfer learning)的提出允许使用已为其他任务训练过的人工神经网络来解决新的问题。

c902c2f8-2329-11ee-962d-dac502259ad0.jpg

图3 机器学习赋能多层纳米天线设计。(a)基于深度学习方法的设计程序示意图。(b)演示由相变材料制成的多层球体从不可见到超散射的转变。(c)迁移学习过程

随后,介绍了机器学习辅助的特定功能超构表面及超构器件设计优化,如图4所示。其中,深度学习可以处理具有固定几何形状单元结构的参数优化问题或实现自由形式设计,如像素化图像集的单元结构,从而显著扩展了单元结构几何形状的范围。超构表面和超构器件开发的关键任务之一是调整光与物质相互作用的特定参量,因此许多研究都致力于设计和优化其吸收、散射和衍射特性。文章介绍了深度学习辅助设计在多谐振和宽带吸收器、结构色器件、高性能太阳能电池、激光成像探测和测距(laser imaging detection and ranging, LIDAR)系统、近眼显示器、“光帆”、高鲁棒性器件等方面的应用,体现出该设计方法对超构器件和系统实用性起到了重要的提升作用。

c92be994-2329-11ee-962d-dac502259ad0.jpg

图4 机器学习赋能的变革性超构表面设计。(a)超构表面逆向设计的一般方案。(b)由两个ITO电极组成的LIDAR设备示例,其中超构结构包含液晶,施加到电极的电压通过 FPGA处理器控制。超构表面通过调整折射率以所需角度偏转透射光束。(c)利用分束器作为耦合光栅的双目近眼显示器

04

化学和生物传感

智能生物传感器融合了多种先进技术,而机器学习辅助设计的超构表面是其中一类子课题,具有极高的研究价值,如图5所示。一方面,该超构传感器提供了一个可靠稳定的传感平台。文章以所展示的基于全电解质超构表面的比色传感器及基于等离子体超构表面的DNA寡聚体检测器与传统器件的对比,展示出该类优化传感器的高灵敏度和高稳定性。另一方面,也可设计其使成为分析响应光谱及对特定分子分类的工具,用于生物分子动力学监测研究。

c963161c-2329-11ee-962d-dac502259ad0.jpg

图5 深度学习赋能的超构传感器。(a)深度学习辅助设计的超构表面传感应用示意图。(b)使用深度学习方法逆向设计的比色传感器示例。(c)深度学习辅助设计的SARS-CoV-2分类器件。(d)用于监测生物分子动力学的等离子体传感器示例

05

自适应超构系统

人工智能技术可调整系统对特定输入的响应,进一步改变输入可编程超构表面的编码序列以适应环境变化。近年来,作为智能超表面的一个新分支,这一概念在射频无线通信领域引起了人们的广泛关注,将有望应用于6G和物联网技术中,如图6所示。

c989657e-2329-11ee-962d-dac502259ad0.jpg

图 6 自适应超构表面。(a)深度学习辅助自适应超构设备的示意图。(b)自适应隐形装置示例。(c)基于超构表面的深度学习辅助微波成像仪。(d)具有可重编程功能的基于超构表面的光学人工神经网络。

06

观点和展望

机器学习能够帮助研究者实现非常规、高性能的光学设计,从而推进基于超构光子学设备的成像、传感等功能实现,如图7所示。随着在智能光子学设计方法和新兴材料平台构建上的投入增多,智能超构系统、拓扑光子学、光神经网络、高维系统优化等新研究、新视角、新方法将被不断开拓,从而极大地拓宽光子学领域及其应用。

文章强调了光子设备作为物理神经网络平台实现模拟自然神经结构的信息处理方法——神经形态计算的可能性。不同于传统的集中式处理架构,通过这种分布式的信息处理方法,能够实现节能、并行的计算和任务处理。目前,不同类型的光子神经元方案已通过使用马赫-曾德尔干涉仪、相变材料、衍射元件等进行物理实现。超构光子学中的多种力学和非线性现象能够进一步使得这些物理深度学习平台实现更复杂和重要的计算,如卷积神经网络的构建等。同时,其他的受生物学启发的智能超构系统,如蜘蛛眼视觉系统、光子突触等,在人工智能技术的助力下也能得到性能和功能多样性的提升。

c9adb23a-2329-11ee-962d-dac502259ad0.jpg

图7 深度学习支持的超构系统示例。(a)一维光子晶体拓扑特性的正向和逆向设计。(b) 通过深度学习算法设计的连续体中的束缚态,允许预测具有自动标记模式的反射光谱并找到合适的晶胞几何参数。(c)受生物学启发的深度学习算法辅助系统示例。通过模仿生物神经网络的工作逻辑,实现类蜘蛛视觉系统设计

责任编辑:彭菁

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47182

    浏览量

    238198
  • 机器学习
    +关注

    关注

    66

    文章

    8406

    浏览量

    132553
  • 光子学
    +关注

    关注

    0

    文章

    37

    浏览量

    11356

原文标题:人工智能赋能超构光子学

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的效率,还为科学研究提供了前所未有的洞察力和精确度。例如,在生物领域,AI能够帮助科学家快速识别基因序列中的关键变异,加速新药研发进程。 2. 跨学科融合的新范式 书中强调,人工智能的应用促进了多个
    发表于 10-14 09:12

    人工智能是什么?

    ` 人工智能是什么?什么是人工智能人工智能是未来发展的必然趋势吗?以后人工智能技术真的达到电影里机器人的
    发表于 09-16 15:40

    人工智能的前世今生 引爆人工智能大时代

    ,对人工智能的乐观预测无处不在,达特茅斯会议上的一段话或许表明当时计算机科学界的宏大愿景:“这项研究建立在一种猜想的基础之上,那就是学习的每一方面或智力的任何其他功能,原则上都可以准确地描述,并由机器
    发表于 03-03 11:05

    人工智能事实上是一种生物进化历程的压缩

    信息论、控制论、自动化、仿生、生物、心理学、数理逻辑、语言、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和
    发表于 03-08 10:56

    人工智能就业前景

    越大薪酬越高的现象。人工智能目前是一个快速增长的领域,人才需求量大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,现在是进入人工智能领域的大好时机。研究还表明,掌握三种以上技能的人才对企业的吸引力更大,且趋势越来越明显,因
    发表于 03-29 15:46

    人工智能医生未来或上线,人工智能医疗市场规模持续增长

    。   人工智能和医疗的结合被看作未来5-10年的投资热点之一。根据前瞻产业研究院的报告,中国人工智能+医疗市场规模在持续增长,2017年130亿元,增长40.7%,2018年市场
    发表于 02-24 09:29

    2020年人工智能大会 线上直播

    ;主办的第三届人工智能高峰论坛“洞见AI,智变未来”将于2020年7月10日举行。本届大会将邀请行业顶尖的专家、学者、企业代表、投资机构共聚一堂,洞见和把握市场先机,共享AI智能
    发表于 01-15 14:09

    路径规划用到的人工智能技术

    路径规划用到的人工智能技术二 人工智能编程语言/数据结构与算法三 人工智能基础原理四 智能信息获取(简称爬虫) 与数据分析1、发起请求3、解析内容4、保存数据二、Requests库介绍
    发表于 07-20 06:53

    中汽创智科技首席人工智能官丁华杰:AI自动驾驶的几点思考 精选资料分享

    中国智能产业高峰论坛(CIIS 2020)在嘉兴南湖举办。在11月15日举办的智能驾驶产业专题论坛上,中汽创智科技有限公司首席人工智能官丁华杰先生为我们带来了题为《AI
    发表于 07-27 06:14

    人工智能芯片是人工智能发展的

    人工智能芯片是人工智能发展的 | 特伦斯谢诺夫斯基责编 | 屠敏本文内容经授权摘自《深度学习 智能时代的核心驱动力量》从AlphaGo的人机对战,到无人驾驶汽车的上路,再到AI合成主播上岗
    发表于 07-27 07:02

    物联网人工智能是什么?

    制造出来的系统,表现出来的智能化。人工智能分类:强人工智能,弱人工智能。强人工智能:强人工智能
    发表于 09-09 14:12

    人工智能怎样双十一

    通过人工智能,更好的实现双十一网购,这是技术的一个重要体现。
    发表于 11-14 16:31 1005次阅读

    人工智能如何智能工厂

    人工智能如何智能工厂?,清风动的时候好像和智能工厂更为接近,两者是否相互提高?cctv-9
    的头像 发表于 01-20 14:25 2021次阅读

    TI芯科技 中国新基建 | 边缘人工智能来真的了——TI芯科技中国新基建之人工智能

    TI芯科技 中国新基建 | 边缘人工智能来真的了——TI芯科技中国新基建之人工智能
    发表于 10-28 11:59 1次下载
    TI芯科技 <b class='flag-5'>赋</b><b class='flag-5'>能</b>中国新基建 | 边缘<b class='flag-5'>人工智能</b>来真的了——TI芯科技<b class='flag-5'>赋</b><b class='flag-5'>能</b>中国新基建之<b class='flag-5'>人工智能</b>

    铌酸锂表面制备及光子应用

    作为三维材料的衍生物,具有亚波长厚度的人工表面结构能够在紧凑的平台上灵活操纵光与物质的相互作用,有利于多功能、
    的头像 发表于 01-14 17:27 3596次阅读