1 大模型现存的10个问题和挑战-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

大模型现存的10个问题和挑战

颖脉Imgtec 2023-09-04 16:42 次阅读

大模型现存的问题和挑战这篇文章介绍了关于大型语言模型(LLMs)研究中的十个主要方向和问题:

1. 减少和度量幻觉:幻觉指的是AI模型虚构信息的情况,可能是创意应用的一个特点,但在其他应用中可能是一个问题。这个方向涉及减少幻觉和开发衡量幻觉的度量标准。

2. 优化上下文长度和构造:针对大多数问题,上下文信息是必需的,文章介绍了在RAG(Retrieval Augmented Generation)架构中优化上下文长度和构造的重要性。

3. 整合其他数据形式:多模态是强大且被低估的领域,文章探讨了多模态数据的重要性和潜在应用,如医疗预测、产品元数据分析等。

4. 使LLMs更快、更便宜:讨论了如何使LLMs更高效、更节约资源,例如通过模型量化、模型压缩等方法。

5. 设计新的模型架构:介绍了开发新的模型架构以取代Transformer的尝试,以及挑战和优势。

6. 开发GPU替代方案:讨论了针对深度学习的新硬件技术,如TPUs、IPUs、量子计算、光子芯片等。

7. 使代理人更易用:探讨了训练能够执行动作的LLMs,即代理人,以及其在社会研究和其他领域的应用。

8. 提高从人类偏好中学习的效率:讨论了从人类偏好中训练LLMs的方法和挑战。

9. 改进聊天界面的效率:讨论了聊天界面在任务处理中的适用性和改进方法,包括多消息、多模态输入、引入生成AI等。

10. 为非英语语言构建LLMs:介绍了将LLMs扩展到非英语语言的挑战和必要性。


1. 减少和衡量幻觉

幻觉是一个广受关注的话题,指的是当AI模型编造信息时发生的情况。在许多创造性的应用场景中,幻觉是一种特性。然而,在大多数其他用例中,幻觉是一个缺陷。一些大型企业近期在关于大型语言模型的面板上表示,影响企业采用LLMs的主要障碍是幻觉问题。

减轻幻觉问题并开发用于衡量幻觉的度量标准是一个蓬勃发展的研究课题。有许多初创公司专注于解决这个问题。还有一些降低幻觉的方法,例如在提示中添加更多的上下文、思维链、自我一致性,或要求模型在回答中保持简洁。

要了解更多关于幻觉的信息,可以参考以下文献:

  • Survey of Hallucination in Natural Language Generation (Ji et al., 2022)
  • How Language Model Hallucinations Can Snowball (Zhang et al., 2023)
  • A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity (Bang et al., 2023)
  • Contrastive Learning Reduces Hallucination in Conversations (Sun et al., 2022)
  • Self-Consistency Improves Chain of Thought Reasoning in Language Models (Wang et al., 2022)
  • SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models (Manakul et al., 2023)
  • NVIDIA’s NeMo-Guardrails中关于事实核查和幻觉的简单示例

2. 优化上下文长度限制

大部分问题需要上下文信息。例如,如果我们询问ChatGPT:“哪家越南餐厅最好?”,所需的上下文将是“在哪里”,因为越南在越南和美国的最佳越南餐厅不同。

在这篇论文中提到,许多信息寻求性的问题都有依赖于上下文的答案,例如Natural Questions NQ-Open数据集中约占16.5%。对于企业用例,这个比例可能会更高。例如,如果一家公司为客户支持构建了一个聊天机器人,为了回答客户关于任何产品的问题,所需的上下文可能是该客户的历史或该产品的信息。由于模型“学习”来自提供给它的上下文,这个过程也被称为上下文学习。


3. 合并其他数据模态

多模态是非常强大但常常被低估的概念。它具有许多优点:

首先,许多用例需要多模态数据,特别是在涉及多种数据模态的行业,如医疗保健、机器人、电子商务、零售、游戏、娱乐等。例如,医学预测常常需要文本(如医生的笔记、患者的问卷)和图像(如CT、X射线、MRI扫描)。

ec690f84-4afe-11ee-a20b-92fbcf53809c.png

其次,多模态承诺可以显著提高模型的性能。一个能够理解文本和图像的模型应该比只能理解文本的模型表现更好。基于文本的模型需要大量的文本数据,因此有现实担忧称我们可能会很快用完训练基于文本的模型的互联网数据。一旦我们用完了文本数据,我们需要利用其他数据模态。

其中一个特别令人兴奋的用例是,多模态可以帮助视障人士浏览互联网和导航现实世界。


4. 使LLMs更快且更便宜

当GPT-3.5于2022年底首次发布时,很多人对在生产中使用它的延迟和成本表示担忧。这是一个复杂的问题,牵涉到多个层面,例如:

训练成本:训练LLMs的成本随着模型规模的增大而增加。目前,训练一个大型的LLM可能需要数百万美元。

推理成本:在生产中使用LLMs的推理(生成)可能会带来相当高的成本,这主要是因为这些模型的巨大规模。

ec93134c-4afe-11ee-a20b-92fbcf53809c.png

解决这个问题的一种方法是研究如何减少LLMs的大小,而不会明显降低性能。这是一个双重的优势:首先,更小的模型需要更少的成本来进行推理;其次,更小的模型也需要更少的计算资源来进行训练。这可以通过模型压缩(例如蒸馏)或者采用更轻量级的架构来实现。


5. 设计新的模型架构

尽管Transformer架构在自然语言处理领域取得了巨大成功,但它并不是唯一的选择。近年来,研究人员一直在探索新的模型架构,试图超越Transformer的限制。

这包括设计更适用于特定任务或问题的模型,以及从根本上重新考虑自然语言处理的基本原理。一些方向包括使用图神经网络、因果推理架构、迭代计算模型等等。eca7cd82-4afe-11ee-a20b-92fbcf53809c.png

新的架构可能会在性能、训练效率、推理速度等方面带来改进,但也需要更多的研究和实验来验证其实际效果。


6. 开发GPU替代方案

当前,大多数深度学习任务使用GPU来进行训练和推理。然而,随着模型规模的不断增大,GPU可能会遇到性能瓶颈,也可能无法满足能效方面的要求。

因此,研究人员正在探索各种GPU替代方案,例如:

TPUs(张量处理器):由Google开发的专用深度学习硬件,专为加速TensorFlow等深度学习框架而设计。

IPUs(智能处理器):由Graphcore开发的硬件,旨在提供高度并行的计算能力以加速深度学习模型。

量子计算:尽管仍处于实验阶段,但量子计算可能在未来成为处理复杂计算任务的一种有效方法。

光子芯片:使用光学技术进行计算,可能在某些情况下提供更高的计算速度。

这些替代方案都有其独特的优势和挑战,需要进一步的研究和发展才能实现广泛应用。


7. 使代理人更易于使用

研究人员正在努力开发能够执行动作的LLMs,也被称为代理人。代理人可以通过自然语言指令进行操作,这在社会研究、可交互应用等领域具有巨大潜力。

然而,使代理人更易于使用涉及到许多挑战。这包括:

指令理解和执行:确保代理人能够准确理解和执行用户的指令,避免误解和错误。

多模态交互:使代理人能够在不同的输入模态(文本、语音、图像等)下进行交互。

个性化和用户适应:使代理人能够根据用户的个性、偏好和历史进行适应和个性化的交互。

这个方向的研究不仅涉及到自然语言处理,还涉及到机器人学、人机交互等多个领域。


8. 提高从人类偏好中学习的效率

从人类偏好中学习是一种训练LLMs的方法,其中模型会根据人类专家或用户提供的偏好进行学习。然而,这个过程可能会面临一些挑战,例如:

数据采集成本:从人类偏好中学习需要大量的人类专家或用户提供的标注数据,这可能会非常昂贵和耗时。

标注噪声:由于人类标注的主观性和误差,数据中可能存在噪声,这可能会影响模型的性能。

领域特异性:从人类偏好中学习的模型可能会在不同领域之间表现不佳,因为偏好可能因领域而异。

研究人员正在探索如何在从人类偏好中学习时提高效率和性能,例如使用主动学习、迁移学习、半监督学习等方法。


9. 改进聊天界面的效率

聊天界面是LLMs与用户交互的方式之一,但目前仍然存在一些效率和可用性方面的问题。例如:

多消息对话:在多轮对话中,模型可能会遗忘之前的上下文,导致交流不连贯。

多模态输入:用户可能会在消息中混合文本、图像、声音等不同模态的信息,模型需要适应处理这些多样的输入。

对话历史和上下文管理:在长时间对话中,模型需要有效地管理对话历史和上下文,以便准确回应用户的问题和指令。

改进聊天界面的效率和用户体验是一个重要的研究方向,涉及到自然语言处理、人机交互和设计等多个领域的知识。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30728

    浏览量

    268879
  • 人工智能
    +关注

    关注

    1791

    文章

    47183

    浏览量

    238234
  • 模型
    +关注

    关注

    1

    文章

    3226

    浏览量

    48806
收藏 人收藏

    评论

    相关推荐

    【「大模型启示录」阅读体验】对大模型更深入的认知

    阅读《大模型启示录》这本书,我得说,它彻底颠覆了我对大模型的理解。作为一经常用KIMI和豆包这类AI工具来完成作业、整理资料的大学生,我原以为大模型就是这些工具背后的技术。但这本书让
    发表于 12-20 15:46

    使用vLLM+OpenVINO加速大语言模型推理

    随着大语言模型的广泛应用,模型的计算需求大幅提升,带来推理时延高、资源消耗大等挑战
    的头像 发表于 11-15 14:20 372次阅读
    使用vLLM+OpenVINO加速大语言<b class='flag-5'>模型</b>推理

    国产大模型发展的经验与教训

        本文介绍大模型的计算特征(国产平台介绍、系统挑战、算子实现、容错)、框架的并行性支持、未来算法等。 随着ChatGPT的横空出世,人工智能大模型成为各行各业热议的焦点,国内外各种大模型
    的头像 发表于 11-11 11:39 228次阅读
    国产大<b class='flag-5'>模型</b>发展的经验与教训

    当前主流的大模型对于底层推理芯片提出了哪些挑战

    随着大模型时代的到来,AI算力逐渐变成重要的战略资源,对现有AI芯片也提出了前所未有的挑战:大算力的需求、高吞吐量与低延时、高效内存管理、能耗等等。
    的头像 发表于 09-24 16:57 638次阅读

    模型发展下,国产GPU的机会和挑战

    德赢Vwin官网 网站提供《大模型发展下,国产GPU的机会和挑战.pdf》资料免费下载
    发表于 07-18 15:44 10次下载
    大<b class='flag-5'>模型</b>发展下,国产GPU的机会和<b class='flag-5'>挑战</b>

    在PyTorch中搭建一最简单的模型

    在PyTorch中搭建一最简单的模型通常涉及几个关键步骤:定义模型结构、加载数据、设置损失函数和优化器,以及进行模型训练和评估。
    的头像 发表于 07-16 18:09 1952次阅读

    AI大模型的发展历程和应用前景

    领域取得重要突破。本文将深入解析AI大模型的基本原理、发展历程、应用前景以及面临的挑战与争议,为读者提供一全面而深入的科普视角。
    的头像 发表于 07-03 18:20 1157次阅读

    模型发展下,国产GPU的机会和挑战(上)

    洞见分析经验分享模型
    德赢Vwin官网 网官方
    发布于 :2024年06月11日 16:51:11

    助听器降噪神经网络模型

    在堆栈网络方法中,参数少于一百万。该模型使用挑战组织者提供的 500 小时的嘈杂语音进行训练。 该网络能够进行实时处理(一帧输入,一帧输 出)并达到有竞争力的结果。将这两种类型的信号变换结合起来,使
    发表于 05-11 17:15

    【大语言模型:原理与工程实践】大语言模型的应用

    能力,它缺乏真正的“思考”过程。对于任何输入,大语言模型都会产生输出,但这仅仅是基于计算和预测下一Token出现的概率。模型并不清楚自己的优势或劣势,也无法主动进行反思和纠正错误。提示工程
    发表于 05-07 17:21

    【大语言模型:原理与工程实践】大语言模型的评测

    安全性的评测则关注模型在强化学习阶段的表现。行业模型的评测则针对特定行业的能力,如金融和法律等领域。整体能力的评测从宏观角度评估模型作为一通用人工智能的综合能力。这些评测方法和基准的
    发表于 05-07 17:12

    【大语言模型:原理与工程实践】探索《大语言模型原理与工程实践》

    处理中预训练架构Transformer,以及这些技术在现实世界中的如何应用。通过具体案例的分析,作者展示了大语言模型在解决实际问题中的强大能力,同时也指出了当前技术面临的挑战和局限性。书中对大语言模型
    发表于 04-30 15:35

    工业大模型的五基本问题

    工业业大模型是大模型为赋能工业应用所产生的产业新形态,是制造业数字化转型3.0的重要载体,是一新质体。
    发表于 04-23 16:04 699次阅读
    工业大<b class='flag-5'>模型</b>的五<b class='flag-5'>个</b>基本问题

    模型时代,国产GPU面临哪些挑战

    ,国产GPU在不断成长的过程中也存在诸多挑战。   在大模型训练上存在差距   大语言模型是基于深度学习的技术。这些模型通过在海量文本数据上的训练,学习语言的语法、语境和语义等多层次的
    的头像 发表于 04-03 01:08 4661次阅读
    大<b class='flag-5'>模型</b>时代,国产GPU面临哪些<b class='flag-5'>挑战</b>

    优于10倍参数模型!微软发布Orca 2 LLM

    微软发布 Orca 2 LLM,这是 Llama 2 的一调优版本,性能与包含 10 倍参数的模型相当,甚至更好。
    的头像 发表于 12-26 14:23 625次阅读