1 傅里叶变换和反变换公式-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

傅里叶变换和反变换公式

工程师邓生 来源:未知 作者:刘芹 2023-09-07 16:53 次阅读

傅里叶变换和反变换公式

傅里叶变换和反变换在信号处理领域中被广泛应用。傅里叶变换是将一个时域信号转换为频域信号的过程,而傅里叶反变换则是将一个频域信号转换为时域信号的过程。这篇文章将详细讲解傅里叶变换和反变换的公式,并解释它们在信号处理领域中的应用。

1. 傅里叶变换公式

傅里叶变换将一个时域信号 f(t) 转换为一个频域信号 F(ω),其公式如下:

F(ω) = ∫ f(t) e^(-iωt) dt

其中,ω 是角频率,e^(-iωt) 是欧拉公式,它表示一个复数,即 cos(ωt) - i sin(ωt)。这个公式可以分为三个部分:时域信号 f(t)、复指数函数 e^(-iωt) 和积分运算。

那么,这个公式是如何得到的呢?我们可以从一个简单的周期信号开始,来了解它的推导过程。

假设我们有一个周期为 T 的三角波信号:

f(t) = A(t - kT)

其中 A 是振幅,k 是整数。我们想求出它的傅里叶变换,也就是它的频域表示。我们可以将周期信号展开成一个无穷级数:

f(t) = Σ(A/2π)n sin(nωt)

其中,ω = 2π/T,n 是整数。

我们可以将这个式子写成一个积分形式,也就是:

f(t) = ∫ F(ω) e^(iωt) dω

其中,

F(ω) = (A/2π)Σδ(ω - nω)

δ(ω) 是狄拉克 δ 函数,表示在ω处有一个冲击,即单位面积单位高度的峰值。

然后,我们可以将周期信号 f(t) 插值到连续时间轴上,得到一个连续的信号:

f(t) = ∑(A/2π)δ(t - kT)sin[nω(t - kT)]

接着,我们将三角波信号拆分为奇偶部分,得到:

f(t) = f_o(t) + f_e(t)

其中,f_o(t) 是奇函数,f_e(t) 是偶函数。我们可以将奇偶部分分别进行傅里叶变换,得到:

F_o(ω) = ∫ f_o(t) e^(-iωt) dt
F_e(ω) = ∫ f_e(t) e^(-iωt) dt

由于 f(t) = f_o(t) + f_e(t),我们可以将两个傅里叶变换加起来,得到:

F(ω) = F_o(ω) + F_e(ω)

那么,最终的傅里叶变换公式就是:

F(ω) = 1/2π ∫ f(t) e^(-iωt) dt

这个式子表示在频域中,每个频率的分量都对应着时域中各个时刻的加权和。

2. 傅里叶变换的物理意义

傅里叶变换可以将一个信号分解成不同的频率分量。在频域中,我们可以看到各个频率分量所占的比例,也可以通过这些分量重建原始信号。

假设我们有一个正弦信号:

f(t) = A sin(ωt)

我们可以将它的傅里叶变换表示为:

F(ω) = πA[δ(ω - ω_0) + δ(ω + ω_0)]

这个式子的意义是,在频域中,这个正弦信号只有一个频率分量 ω_0,其幅值为 πA。如果我们通过修改频率分量的幅值来改变信号的形状,那么傅里叶变换就成为了一种方便的信号分析与合成工具。

3. 傅里叶反变换公式

傅里叶变换将时域信号转换为频域信号,而傅里叶反变换则将频域信号转换为时域信号。它的公式如下:

f(t) = (1/2π) ∫ F(ω) e^(iωt) dω

其中,F(ω) 是信号在频域中的表示。

这个公式的意义是,在时域中,每个时刻的值都是各个频率分量在频域中的加权和,即:

f(t) = Σ F(ω) e^(iωt) dω

由于所有的频率分量都可以通过傅里叶变换得出,我们就可以通过傅里叶反变换重建原始信号。

4. 傅里叶变换和反变换的应用

傅里叶变换和反变换在信号处理中有着广泛的应用,包括图像处理、音频处理、通信系统等。

在图像处理领域中,傅里叶变换和反变换用于图像的频域分析和合成。通过将图像转换到频域中,我们可以看到各个频率分量所占的比例,进而进行图像增强、滤波等处理。

在音频处理领域中,傅里叶变换和反变换用于音频信号的频域分析和合成。通过将音频信号转换到频域中,我们可以看到各个频率分量所占的比例,进而进行音频增强、滤波等处理。

在通信系统中,傅里叶变换和反变换用于频域的正交多路复用技术,可以将多个信号通过不同的频率分量进行合成和传输,从而提高了信道的利用率。

总之,傅里叶变换和反变换是信号处理领域的重要工具。通过将信号转换到频域中,我们可以进行更为方便、精确的信号分析和处理。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 图像处理
    +关注

    关注

    27

    文章

    1289

    浏览量

    56720
  • 傅里叶变换
    +关注

    关注

    6

    文章

    441

    浏览量

    42590
收藏 人收藏

    评论

    相关推荐

    常见傅里叶变换错误及解决方法

    傅里叶变换是一种数学工具,用于将信号从时域转换到频域,以便分析其频率成分。在使用傅里叶变换时,可能会遇到一些常见的错误。 1. 采样定理错误 错误描述: 在进行傅里叶变换之前,没有正确地采样信号
    的头像 发表于 11-14 09:42 622次阅读

    傅里叶变换的基本性质和定理

    傅里叶变换是信号处理和分析中的一项基本工具,它能够将一个信号从时间域(或空间域)转换到频率域。以下是傅里叶变换的基本性质和定理: 一、基本性质 线性性质 : 傅里叶变换是线性的,即对于信号的线性组合
    的头像 发表于 11-14 09:39 583次阅读

    经典傅里叶变换与快速傅里叶变换的区别

    经典傅里叶变换与快速傅里叶变换(FFT)在多个方面存在显著的区别,以下是对这两者的比较: 一、定义与基本原理 经典傅里叶变换 : 是一种将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数
    的头像 发表于 11-14 09:37 305次阅读

    如何实现离散傅里叶变换

    离散傅里叶变换(DFT)是将离散时序信号从时间域变换到频率域的数学工具,其实现方法有多种,以下介绍几种常见的实现方案: 一、直接计算法 直接依据离散傅里叶变换公式进行计算,这种方法最简
    的头像 发表于 11-14 09:35 310次阅读

    傅里叶变换与卷积定理的关系

    傅里叶变换与卷积定理之间存在着密切的关系,这种关系在信号处理、图像处理等领域中具有重要的应用价值。 一、傅里叶变换与卷积的基本概念 傅里叶变换 : 是一种将时间域(或空间域)信号转换为频率域信号
    的头像 发表于 11-14 09:33 417次阅读

    傅里叶变换与图像处理技术的区别

    在数字信号处理和图像分析领域,傅里叶变换和图像处理技术是两个核心概念。尽管它们在实际应用中常常交织在一起,但它们在本质上有着明显的区别。 傅里叶变换的基本原理 傅里叶变换是一种将信号从时域(或空间域
    的头像 发表于 11-14 09:30 302次阅读

    傅里叶变换在信号处理中的应用

    在现代通信和信号处理领域,傅里叶变换(FT)扮演着核心角色。它不仅帮助我们分析信号的频率成分,还能用于滤波、压缩和信号恢复等多种任务。 傅里叶变换的基本原理 傅里叶变换是一种将信号从时域转换到频域
    的头像 发表于 11-14 09:29 882次阅读

    傅里叶变换的数学原理

    傅里叶变换的数学原理主要基于一种将函数分解为正弦和余弦函数(或复指数函数)的线性组合的思想。以下是对傅里叶变换数学原理的介绍: 一、基本原理 傅里叶级数 :对于周期性连续信号,可以将其表示为傅里叶
    的头像 发表于 11-14 09:27 387次阅读

    傅里叶变换基本原理及在机器学习应用

    连续傅里叶变换(CFT)和离散傅里叶变换(DFT)是两个常见的变体。CFT用于连续信号,而DFT应用于离散信号,使其与数字数据和机器学习任务更加相关。
    发表于 03-20 11:15 914次阅读
    <b class='flag-5'>傅里叶变换</b>基本原理及在机器学习应用

    一文道破傅里叶变换的本质,优缺点一目了然

    傅里叶变换公式为: 可以把傅里叶变换也成另外一种形式: 可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频
    发表于 03-12 16:06

    傅里叶变换和拉普拉斯变换的关系是什么

    傅里叶变换和拉普拉斯变换是两种重要的数学工具,常用于信号分析和系统理论领域。虽然它们在数学定义和应用上有所差异,但它们之间存在紧密的联系和相互依存的关系。 首先,我们先介绍一下傅里叶变换和拉普拉斯
    的头像 发表于 02-18 15:45 1678次阅读

    傅里叶变换的应用 傅里叶变换的性质公式

    傅里叶变换(Fourier Transform)是一种数学方法,可以将一个函数在时间或空间域中的表示转化为频率域中的表示。它是由法国数学家约瑟夫·傅里叶(Jean-Baptiste Joseph
    的头像 发表于 02-02 10:36 1338次阅读

    什么是傅里叶变换和逆变换?为什么要用傅里叶变换?

    傅里叶变换和逆变换是一对数学变换,用于分析信号和数据的频域特征。傅里叶变换将一个信号或函数从时间域转换到频域,而逆变换则将
    的头像 发表于 01-11 17:19 3836次阅读

    短时傅里叶变换STFT原理详解

    传统傅里叶变换的分析方法大家已经非常熟悉了,特别是快速傅里叶变换(FFT)的高效实现给数字信号处理技术的实时应用创造了条件,从而加速了数字信号处理技术的发展。
    的头像 发表于 01-07 09:46 2825次阅读
    短时<b class='flag-5'>傅里叶变换</b>STFT原理详解

    什么是傅里叶变换

    傅里叶变换
    安泰仪器维修
    发布于 :2024年01月02日 11:16:02