行为决策在自动驾驶系统架构中的位置
Claudine Badue等人以圣西班牙联邦大学(UFES)开发的自动驾驶汽车(Intelligent Autonomous Robotics Automobile,IARA)为例,提出了自动驾驶汽车的自动驾驶系统的典型架构。
自动驾驶系统主要由感知系统(Perception System)和规划决策系统(Decision Making System)组成。
感知系统主要由交通信号检测模块(Traffic Signalization Detector,TSD)、移动目标跟踪模块(Moving Objects Tracker,MOT)、定位与建图模块(Localizer and Mapper)等组成。
规划决策系统主要由全局路径规划模块(Route Planner)、局部路径规划模块(Path Planner)、行为决策模块(Behavior Selector)、运动规划模块(Motion Planner)、自主避障模块(Obstacle Avoider)以及控制模块(Controller)组成。
路径跟踪控制在此架构中主要是由控制模块实现。控制模块接收最终由自主避障模块修改的运动计划轨迹,计算并发送相应的控制指令给方向盘、油门和制动器的执行器,以使汽车在现实世界规则允许的情况下执行修改后的轨迹。
自动驾驶汽车路径跟踪控制算法,主要是控制车辆按照上层路径规划器规划好的路径进行无偏差横纵向控制。
目前自动驾驶汽车横向控制算法主要分为两种,包括有模型和无模型的控制方法。
无模型横向控制方法即传统的比例-积分-微分控制(Proportional Integral Derivative,PID)
另一种是基于模型的横向控制方法,其中根据控制模型的不同,控制器又可分为有基于运动学模型的控制器和基于动力学模型的控制器。
车辆运动学模型通常将车辆简化为一个质点,即为质点模型;或将车辆的垂直方向移动忽略、将车辆的同车轴的车轮角速度相同、将车辆的朝向简化为前轮的朝向
即简化为自行车模型,基于该模型的控制方法主要有纯跟踪控制(Pure Pursuit)算法、Stanley 控制算法,后轮反馈控制算法(Rear wheel feedback)。
该类型控制器通常是通过控制航向角和横向误差来计算转向角,易于实现,但该模型仅适用于不考虑车辆动力学的低速行驶工况,如自动泊车控制系统。
如果考虑复杂城市工况和高速交通环境时,则基于运动学模型的控制器的可靠性和鲁棒性并不高,因此就需要引入车辆动力学模型。
基于车辆动力学模型的控制算法主要有线性二次型调节器(Linear Quadratic Regulator,LQR)、模型预测控制(Model Predictive Control,MPC)、滑模控制(Sliding Model Control,SMC)等
由于其考虑了车辆高速行驶时车身与外界干扰项等多重因素,如轮胎的非线性变化、车辆横摆与侧倾约束、路面曲率变化等,进一步提高了车辆行驶于复杂工况的安全性和可 靠性。
目前的车辆动力学模型通常是简化了的二自由度单车模型,其保留了车辆的横摆和侧向运动,在能够准确描述车辆动力学的基础上尽量简化了车辆模型,以减少算法的计算量,确保控制系统的实时性。
-
模块
+关注
关注
7文章
2696浏览量
47430 -
感知系统
+关注
关注
1文章
70浏览量
15939 -
自动驾驶
+关注
关注
784文章
13784浏览量
166372
发布评论请先 登录
相关推荐
评论