1 基于YOLOv5的视频计数 — 汽车计数实现-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于YOLOv5的视频计数 — 汽车计数实现

新机器视觉 来源:新机器视觉 2023-11-25 12:11 次阅读

视频中计数对象可能看起来有挑战性,但借助Python和OpenCV的强大功能,变得令人意外地易于实现。在本文中,我们将探讨如何使用YOLO(You Only Look Once)目标检测模型在视频流或文件中计数对象。我们将该过程分解为简单的步骤,使初学者能够轻松跟随。

本文将分为以下几个部分:

  • 需求

  • 启发式:汽车计数

  • 检测过滤

  • 启发式:实现

  • 结论

需求

在我们深入了解该过程之前,让我们确保已安装所需的库。主要需要:

  • PyTorch:通过PyTorch Hub,我们将访问Ultralytics存储库以下载Yolov5模型。

  • OpenCV:用于加载、操作和显示视频的所有实用程序。

  • Matplotlib(可选):我们将使用此实用程序在多边形内进行点验证。

如代码片段1所示,requirements.txt文件中列出了这些要求。

opencv-python==4.8.1.78
torch==2.1.0
matplotlib==3.8.0
ultralytics==8.0.203
pandas==2.1.2
requests==2.31.0

一旦我们查看了主要要求,就该了解我们将开发用于从视频中计数对象的启发式的时间了。

启发式:汽车计数

在此示例中,我们将使用一个视频场景,其中将对汽车进行计数。图2显示了一个示例帧。

7e1fc1da-8b45-11ee-939d-92fbcf53809c.jpg用于计数汽车的视频帧

为了计数汽车,我们将使用Yolov5来检测视频中的对象。基于检测到的对象,我们将过滤与汽车、公共汽车和卡车有关的类别。由于检测基于边界框(具有坐标xmin、ymin、xmax、ymax的多边形),我们将需要获取每个边界框的中心点(xc, yc),该中心点将是我们对象的参考点。

最后,我们将绘制一个多边形,该多边形将是计数对象的参考,也就是说,如果对象的参考点在多边形内,我们将增加对象计数器,否则计数器不受影响。在下图中,我们可以看到多边形和多边形内的汽车数量的表示。

7e2d92d8-8b45-11ee-939d-92fbcf53809c.jpg检测(绿色点)、多边形(红色线)和计数器

此为止,我们已经知道了需求是什么,以及我们将实施用于计数对象的启发式的方法。现在可以加载模型:Yolov5 Nano

在本例中,我们将使用Yolov5的nano版本(即yolov5n),我们将通过PyTorch Hub从Ultralytics存储库中扩展它。同样,为了加载和在每一帧上生成迭代器,我们将使用OpenCV(即cv2),下述代码是具体的实现方式:

import cv2
import torch


VIDEO_PATH="data/traffic.mp4"
HUB="ultralytics/yolov5"
YOLO="yolov5n"


def count_cars(cap: cv2.VideoCapture):


    model = torch.hub.load(HUB, model=YOLO, pretrained=True)


    while cap.isOpened():
        status, frame = cap.read()


        if not status:
            break


        # Detection filtering and heuristic
        # will be implemented here.


        cv2.imshow("frame", frame)


        if cv2.waitKey(10) & 0xFF == ord('q'):
             break


    cap.release()




if __name__ == '__main__':


    cap = cv2.VideoCapture(VIDEO_PATH)
    count_cars(cap)

正如我们所看到的,我们已经定义了count_cars()函数,我们将在整个项目中对其进行更新。在4-6行,我们定义了视频所在路径、hub和模型名称的变量。从那里,让我们迅速跳到31-32行,在那里通过初始化cap对象加载视频,然后将其传递给count_cars()函数。

返回到第10行,通过PyTorch Hub,我们下载并初始化了yolov5n模型。随后,在第12行,我们生成一个迭代器,只要有要显示的帧,它就会保持活动状态。一旦帧完成,与迭代器相关的对象就会被释放(第26行)。

在第13行,我们读取帧,验证是否成功读取,并显示它们(第21行)。在这一部分,将出现一个窗口,用于查看从此迭代器显示的视频。最后,第23行是在按q键时删除弹出窗口。

检测过滤

过滤检测是指从Yolo预测中提取感兴趣的类别的过程。在这种情况下,我们将过滤掉分数大于0.5且类别为汽车、公共汽车或卡车的检测。同样,我们将需要找到边界框的中心点,我们将其用作对象的参考点。下面代码显示了这两个函数的实现。

import pandas as pd


def get_bboxes(preds: object):
    df = preds.pandas().xyxy[0]
    df = df[df["confidence"] >= 0.5]
    df = df[df["name"].isin(["car", "bus", "truck"])]


    return df[["xmin", "ymin", "xmax", "ymax"]].values.astype(int)


def get_center(bbox):
    center = ((bbox[0] + bbox[2]) // 2, (bbox[1] + bbox[3]) // 2)
    return center

正如我们所看到的,我们定义了两个函数get_bboxes()和get_center()。get_bboxes()函数(第3行)旨在提取所有分数大于0.5并过滤掉已经提到的类别的预测,返回一个坐标形式的边界框的numpy数组[xmin, ymin, xmax, ymax]。

get_center()函数(第10行)接收一个带有边界框坐标的numpy数组,并使用方程xc, yc = (xmin + xmax) // 2, (ymin + ymax) // 2分别计算中心点。

在这一点上,我们已经下载了模型,过滤了预测,并获得了每个对象的中心点。现在,我们唯一需要的是生成决定启发式区域的多边形。因此,让我们继续下一节!

启发式:实现

我们将定义的多边形可能会因视频、透视等而有所不同。在这种情况下,例如此示例,我们将使用8个点,如下图所示:

7e453ba4-8b45-11ee-939d-92fbcf53809c.jpg具有坐标的多边形

一旦我们定义了多边形,我们唯一需要做的就是验证每个对象的参考点是否在多边形内。如果在多边形内,我们就会增加一个计数器,如果不在,我们就继续。

import cv2
import numpy as np
import matplotlib.path as mplPath


POLYGON = np.array([
    [333, 374],
    [403, 470],
    [476, 655],
    [498, 710],
    [1237, 714],
    [1217, 523],
    [1139, 469],
    [1009, 393],
])




def is_valid_detection(xc, yc):
    return mplPath.Path(POLYGON).contains_point((xc, yc))


def count_cars(cap: object):


    model = torch.hub.load(HUB, model=YOLO, pretrained=True)


    while cap.isOpened():
        status, frame = cap.read()


        if not status:
            break


        preds = model(frame)
        bboxes = get_bboxes(preds)


        detections = 0
        for box in bboxes:
            xc, yc = get_center(box)


            if is_valid_detection(xc, yc):
                detections += 1

让我们注意到在第5行,我们定义了多边形。在第17行,我们定义了关键函数:is_valid_detection(),它旨在验证参考点(xc, yc)是否在多边形内。这个函数在第37行调用,如果为真,它会增加有效检测计数器,否则什么也不做。

最后,为了可视化,我们将添加一些OpenCV行来显示计数器、每辆检测到的汽车的参考点和多边形。

def count_cars(cap: object):


    model = torch.hub.load(HUB, model=YOLO, pretrained=True)
    
    while cap.isOpened():
        status, frame = cap.read()


        if not status:
            break


        preds = model(frame)
        bboxes = get_bboxes(preds)


        detections = 0
        for box in bboxes:
            xc, yc = get_center(box)
            
            if is_valid_detection(xc, yc):
                detections += 1
                
            # Draw poit of reference for each detection
            cv2.circle(img=frame, center=(xc, yc), radius=5, color=(0,255,0), thickness=-1)
            # Draw bounding boxes for each detection
            cv2.rectangle(img=frame, pt1=(box[0], box[1]), pt2=(box[2], box[3]), color=(255, 0, 0), thickness=1)
        # Draw the counter
        cv2.putText(img=frame, text=f"Cars: {detections}", org=(100, 100), fontFace=cv2.FONT_HERSHEY_PLAIN, fontScale=3, color=(0,0,0), thickness=3)
        # Draw the polygon
        cv2.polylines(img=frame, pts=[POLYGON], isClosed=True, color=(0,0,255), thickness=4)
        # Display frame
        cv2.imshow("frame", frame)

结论

在本文中,我们看到了如何从视频中实现一个对象计数器。我们开发了一种计算汽车、卡车和公共汽车的实现,基于一个定义的多边形,即如果对象在多边形内,计数器就会增加。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 计数器
    +关注

    关注

    32

    文章

    2256

    浏览量

    94476
  • 模型
    +关注

    关注

    1

    文章

    3226

    浏览量

    48806
  • 目标检测
    +关注

    关注

    0

    文章

    209

    浏览量

    15605

原文标题:基于YOLOv5的视频计数 — 汽车计数实现

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    YOLOv5】LabVIEW+YOLOv5快速实现实时物体识别(Object Detection)含源码

    前面我们给大家介绍了基于LabVIEW+YOLOv3/YOLOv4的物体识别(对象检测),今天接着上次的内容再来看看YOLOv5。本次主要是和大家分享使用LabVIEW快速实现
    的头像 发表于 03-13 16:01 2145次阅读

    Yolov5算法解读

    yolov5于2020年由glenn-jocher首次提出,直至今日yolov5仍然在不断进行升级迭代。 Yolov5YOLOv5s、YOLOv5
    的头像 发表于 05-17 16:38 9017次阅读
    <b class='flag-5'>Yolov5</b>算法解读

    YOLOv5】LabVIEW+TensorRT的yolov5部署实战(含源码)

    今天主要和大家分享在LabVIEW中使用纯TensoRT工具包快速部署并实现yolov5的物体识别
    的头像 发表于 08-21 22:20 1309次阅读
    【<b class='flag-5'>YOLOv5</b>】LabVIEW+TensorRT的<b class='flag-5'>yolov5</b>部署实战(含源码)

    在RK3568教学实验箱上实现基于YOLOV5的算法物体识别案例详解

    一、实验目的 本节视频的目的是了解YOLOv5模型的用途及流程,并掌握基于YOLOV5算法实现物体识别的方法。 二、实验原理 YOLO(You Only Look Once!)
    发表于 12-03 14:56

    龙哥手把手教你学视觉-深度学习YOLOV5

    可以实现理想的检测效果。在本套视频,有别于常见的深度学习教程以理论为主进行全面讲解,以没有任何深度学习理论基础的学员学习角度,以实际应用为目标,讲解如何设计一个完整的yolov5工业外观检测,手把手教学
    发表于 09-03 09:39

    怎样使用PyTorch Hub去加载YOLOv5模型

    在Python>=3.7.0环境中安装requirements.txt,包括PyTorch>=1.7。模型和数据集从最新的 YOLOv5版本自动下载。简单示例此示例从
    发表于 07-22 16:02

    如何YOLOv5测试代码?

    使用文档“使用 YOLOv5 进行对象检测”我试图从文档第 10 页访问以下链接(在 i.MX8MP 上部署 yolov5s 的步骤 - NXP 社区) ...但是这样做时会被拒绝访问。该文档没有说明需要特殊许可才能下载 test.zip 文件。NXP 的人可以提供有关如
    发表于 05-18 06:08

    yolov5模型onnx转bmodel无法识别出结果如何解决?

    问题描述: 1. yolov5模型pt转bmodel可以识别出结果。(转化成功,结果正确) 2. yolov5模型pt转onnx转bmodel可以无法识别出结果。(转化成功,结果没有) 配置: 1.
    发表于 09-15 07:30

    YOLOv5在OpenCV上的推理程序

    YOLOv5官方给出的YOLOv5在OpenCV上推理的程序相对来说是比较通俗易懂的,条理清晰,有基本的封装,直接可用!但是我也发现,模型的推理时间跟前后处理的时间相差无几,特别是当视频流有多个检测到的对象时候,整个帧率会有明显
    的头像 发表于 11-02 10:16 1897次阅读

    YOLOv5 7.0版本下载与运行测试

    支持实例分割了,从此YOLOv5实现了图像分类、对象检测、实例分割三个支持,从训练到部署。
    的头像 发表于 11-30 15:55 3772次阅读

    在C++中使用OpenVINO工具包部署YOLOv5模型

    下载并转换YOLOv5预训练模型的详细步骤,请参考:《基于OpenVINO™2022.2和蝰蛇峡谷优化并部署YOLOv5模型》,本文所使用的OpenVINO是2022.3 LTS版。
    的头像 发表于 02-15 16:53 4641次阅读

    使用旭日X3派的BPU部署Yolov5

    本次主要介绍在旭日x3的BPU中部署yolov5。首先在ubuntu20.04安装yolov5,并运行yolov5并使用pytoch的pt模型文件转ONNX。
    的头像 发表于 04-26 14:20 879次阅读
    使用旭日X3派的BPU部署<b class='flag-5'>Yolov5</b>

    yolov5和YOLOX正负样本分配策略

    整体上在正负样本分配中,yolov7的策略算是yolov5和YOLOX的结合。因此本文先从yolov5和YOLOX正负样本分配策略分析入手,后引入到YOLOv7的解析中。
    发表于 08-14 11:45 2266次阅读
    <b class='flag-5'>yolov5</b>和YOLOX正负样本分配策略

    YOLOv5网络结构训练策略详解

    前面已经讲过了Yolov5模型目标检测和分类模型训练流程,这一篇讲解一下yolov5模型结构,数据增强,以及训练策略。
    的头像 发表于 09-11 11:15 2168次阅读
    <b class='flag-5'>YOLOv5</b>网络结构训练策略详解

    RK3588 技术分享 | 在Android系统中使用NPU实现Yolov5分类检测-迅为电子

    RK3588 技术分享 | 在Android系统中使用NPU实现Yolov5分类检测-迅为电子
    的头像 发表于 08-23 14:58 687次阅读
    RK3588 技术分享 | 在Android系统中使用NPU<b class='flag-5'>实现</b><b class='flag-5'>Yolov5</b>分类检测-迅为电子