1 微美全息(NASDAQ:WIMI)开发基于神经网络的无人机控制系统引领技术革新-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微美全息(NASDAQ:WIMI)开发基于神经网络的无人机控制系统引领技术革新

科技讯息 来源:科技讯息 作者:科技讯息 2024-01-03 11:53 次阅读

在现代科技快速发展的背景下,无人机技术逐渐成为民用和商业领域中车载工具。然而,随着无人机应用领域的扩展,系统在执行任务时可能面临多变的气象条件、复杂的区域、以及各种不可替代的环境预知的环境因素。这使得无人机系统需要更加智能和监控的控制系统。传统的线性控制系统在处理非线性和复杂动态系统时存在着短板,无人机系统的飞行动力学通常是非线性的,因此需要一种能够有效处理此类动态系统的先进控制方法。此外,无人机系统面临的挑战也随之增加,这些挑战包括不断变化的环境、未知噪声、系统不确定性和复杂的动态问题,这些因素的存在增加了系统的不确定性,需要一个能够实时适应和调整的控制系统。据悉,微美全息(NASDAQ:WIMI)一直在此背景下希望开发一种创新的智能控制系统,以解决这些不确定性的问题提高无人机的控制准确性。

随着无人机技术的逐渐成熟,市场对于更加智能、更加激烈的系统需求迫切增长。人工神经网络作为一种先进的非线性建模和控制方法,在处理复杂、非线性系统方面表现出色。WIMI微美全息意识针对这一发展趋势,将人工神经网络引入无人机控制系统,以提高系统的性能和配件。

wKgZomWU2i6AQkpGAACUq1wSB1I768.jpg

首先,为了实现对无人机系统中未知动态和不确定性的实时识别,WIMI微美全息开发了一种基于神经网络的标识符。该标识符的任务是通过监测系统输入和输出之间的关系,动态识别地捕捉和学习系统的未知特性。使用适当的神经网络结构,例如循环神经网络(RNN)或长短时记忆网络(LSTM),能够建立一个能够持续迭代和更新的标识符,从而提高对系统动态的逼近精度。再通过将标识符捕获到的信息与已知的系统动态相结合,生成了一个基于神经网络的系统模型。这个模型可以是线性的或非线性的,取决于具体系统的性质。 ,结合线性或非线性控制器,生成了基于神经网络的控制器。这个控制器的设计考虑了系统模型的动态变化,以实现对系统的实时调整,从而保持其在不确定环境下的稳定性性和性能。

此外,WIMI微美全息为了确保在线训练阶段系统的稳定性,引入了线性或非线性控制器。这些控制器在学习过程中充当保护层,防止系统因为未知的动态变化而导致不稳定行为的。在在线训练过程中中,通过将这些稳定性控制器与基于神经网络的控制器良好地工作,能够在学习的同时保持系统的安全运行,从而最大程度地减少不确定性对系统性能的影响。

为了评估所提出的智能控制系统的性能,WIMI微美全息进行了大量的计算机仿真实验。以系统不确定性和干扰动的基准无人机为对象,对系统的稳定性和控制性能进行了全面的评估通过vwin 飞行不同的环境和任务场景,验证了该系统在高效复杂环境、噪声和干扰时的鲁棒性和鲁棒性。

WIMI微美全息基于人工神经网络的无人机智能控制系统代表了在无人机技术领域的一次巨大飞跃。首先,通过引入基于神经网络的强制标识符,系统能够实时识别和近无人机系统中的未知特性,为后续控制器的设计提供了精准的基础。

这一创新技术的开发,为无人机系统的应用领域带来了新的前景。通过大量的计算机仿真验证,该系统在复杂环境、噪声和干扰下表现出色,成功实现了无人机的应用稳定飞行和控制。这不仅使无人机在民用和商业领域的高效应用可靠,同时也为未来的科技发展奠定了坚实的基础。WIMI微美全息的技术突破不仅使无人机系统在复杂环境下的适应能力,也为科技领域带来了启示,将在未来的智能系统发展中发挥关键作用。

显然,这项技术不仅仅是针对无人机技术的重要贡献,更是对整个人工智能与航空领域深度融合的滤波器。未来,这一技术将推动无人机技术的不断发展和智能系统的推进开拓新的道路,WIMI微美全息将继续致力于推动科技的不断进步,为构建更加智能和可靠的未来做出更大的贡献。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 控制系统
    +关注

    关注

    41

    文章

    6604

    浏览量

    110574
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100708
  • 无人机
    +关注

    关注

    229

    文章

    10420

    浏览量

    180098
收藏 人收藏

    评论

    相关推荐

    无人机AI智慧光伏巡检系统技术实现与运维革新

    无人机AI智慧光伏巡检系统技术实现与运维革新 在绿色能源领域,光伏发电正以其清洁、可再生的特性引领着能源转型的浪潮。然而,随着光伏电站规模
    的头像 发表于 11-28 16:32 363次阅读

    人机协同新纪元:全息引领混合增强智能技术革新

    领域的决策能力。   全息,一家深耕前沿科技研发的企业,正积极投身于人机协同混合增强智能技术的研发,旨在实现人类智慧与机器能力的深
    的头像 发表于 11-06 16:46 370次阅读

    特信无人机反制 守护空域安全:无人机干扰设备的技术革新与挑战

    ,特别是在空域安全方面。因此,特信无人机反制无人机干扰设备作为保障空域安全的重要手段,其技术革新与面临的挑战成为了社会关注的焦点。
    的头像 发表于 08-21 09:17 438次阅读

    基于神经网络全息图生成算法

    全息图生成技术作为光学与计算机科学交叉领域的重要研究方向,近年来随着神经网络技术的飞速发展,取得了显著进展。基于神经网络全息图生成算法,以
    的头像 发表于 07-09 15:54 445次阅读

    电机控制系统神经网络优化策略

    电机控制系统作为现代工业自动化的核心组成部分,其性能直接影响到整个生产线的效率和稳定性。随着人工智能技术的快速发展,神经网络在电机控制系统中的应用越来越广泛。
    的头像 发表于 06-25 11:46 645次阅读

    无人机智能巡检系统现代巡检的革新

           无人机智能巡检系统现代巡检的革新        无人机智能巡检系统是利用无人机
    的头像 发表于 06-14 17:18 510次阅读

    第四集 知语云智能科技无人机反制技术与应用--无人机的组成与工作原理

    ”,负责处理各种传感器数据,控制无人机的飞行姿态和轨迹。 传感器:传感器是无人机的“感官”,包括GPS、陀螺仪、加速度计等,用于感知无人机的姿态、速度和位置信息。 通信
    发表于 03-12 11:28

    第三集 知语云智能科技无人机反制技术与应用--无人机的应用领域

    无人机反制技术应运而生。今天,就让我们一起走进知语云智能科技,探索无人机反制技术与应用的世界。 一、无人机应用领域的广泛性 在民用领域,
    发表于 03-12 11:13

    第二集 知语云智能科技无人机反制技术与应用--无人机的发展历程

    随着科技的飞速发展,无人机技术日益成为当今社会的热门话题。从最初的军事侦察到如今的民用消费,无人机凭借其灵活性和高效性,在航拍、农业、物流等多个领域大放异彩。然而,无人机
    发表于 03-12 10:56

    第一集 知语科技无人机反制技术与应用--无人机的定义与分类

    了解无人机反制技术与应用,为您揭开这一神秘领域的面纱。 一、无人机技术概述 1 无人机的定义与分类
    发表于 03-12 10:42

    知语云智能科技无人机防御系统:应对新兴威胁的先锋力量

    随着科技的飞速发展,无人机技术在各个领域的应用日益广泛,但随之而来的是无人机威胁的不断升级。为了有效应对这些新兴威胁,知语云智能科技推出了先进的无人机防御
    发表于 02-26 16:35

    知语云智能科技:反制无人机新篇章—全景监测与激光打击的尖端技术

    的准确性,也为后续的无线电干扰和激光打击提供了精确的目标定位。 无线电干扰技术则是反制无人机系统的关键所在。通过发射特定频率的无线电信号,能够干扰无人机的通信链路,迫使其失去
    发表于 02-23 11:37

    震撼发布!知语云智能科技引领革新,全景反制无人机系统破茧而出!

    无人机技术的不断发展和普及,无人机安全问题将愈发突出。知语云智能科技的全景反制无人机系统无疑为解决这一问题提供了新的思路和方向。我们有理由相
    发表于 01-30 16:07

    \"【重磅推出】知语云智能科技:革新低空无人机反制系统,守护领空安全!

    的低空无人机反制系统。 知语云智能科技的无人机反制系统,集成了先进的雷达探测、无线电干扰、导航诱骗等多项技术。能够在复杂的低空环境中,迅速发
    发表于 01-26 16:10

    全息NASDAQ:WIMI)探索全局-局部特征自适应融合网络框架在图像场景分类中的创新运用

    面临着许多挑战,如复杂的场景等。然而,现有的图像场景分类方法往往只关注全局或局部特征的提取,而忽略了全局和局部特征之间的互补关联。为了解决这些问题,全息(NASDAQ:
    的头像 发表于 01-05 16:08 383次阅读
    <b class='flag-5'>微</b><b class='flag-5'>美</b><b class='flag-5'>全息</b>(<b class='flag-5'>NASDAQ</b>:<b class='flag-5'>WIMI</b>)探索全局-局部特征自适应融合<b class='flag-5'>网络</b>框架在图像场景分类中的创新运用