1 基于纳米金属阵列天线的石墨烯/硅近红外探测器开发-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于纳米金属阵列天线的石墨烯/硅近红外探测器开发

MEMS 来源:红外芯闻 2024-01-17 09:54 次阅读

金属纳米颗粒低聚体不仅具有等离激元共振效应实现光场亚波长范围内的局域化和增强,还可以通过泄漏光场(leaky field)相互干涉实现法诺共振和连续态中的束缚态(BIC)从而使得电磁场更强的局域和增强。

据麦姆斯咨询报道,近期,南京大学电子科学与工程学院的科研团队在《物理学报》期刊上发表了以“基于纳米金属阵列天线的石墨烯/硅近红外探测器”为主题的文章。该文章第一作者为张逸飞,通讯作者为王军转。

本工作采用金纳米金属低聚体超构表面作为石墨烯/硅(SOI)近红外探测器的天线,实现了光响应度2倍的增强。通过时域有限差分法(FDTD)仿真和实验相结合研究了低聚体超构表面光电耦合效率的动态过程,为提高光电探测效率提供了一种重要的途径。

器件和纳米结构制备

器件制备流程如图1所示,选用厚度为1 μm的n型轻掺杂(掺杂浓度约3x10¹⁶ at./cm³)SOI作为衬底,通过光刻图形化和反应耦合等离子体(ICP)刻蚀技术制备出200 μm x 200 μm的硅岛如图1(a)所示,再通过光刻图形化和电子束蒸发技术(EBE)在硅岛上实现做好一对电极(5 nm Ti/45 nm Au),如图1(b),其中一个电极和硅岛接触,另一个电极在绝缘层衬底上与后续转移的石墨烯相接触;接下来通过电子束曝光的方式(EBL)图形天线纳米颗粒并采用EBE蒸金属5 nm Ti/45 nm Au并剥离,如图1(c),最后将化学气相沉淀方法生长的(CVD)石墨烯通过湿法转移的方法转移到硅岛上面,并采用刻蚀方法将石墨烯和与硅接触的电极断开,这样整个石墨烯/硅肖特基器件制备完成如图1(d)所示,器件显微镜照片如图1(e)所示,石墨烯形状完好,没有破裂。

b56a4264-b48a-11ee-8b88-92fbcf53809c.jpg

图1 纳米天线器件制备流程示意图

图2(a)为制备的纳米天线阵列示意图,夹角为θ,每个阵列大小约10 μm,天线正方形边长为250 nm,周期为1750 nm,图2(c)和(d)为θ等于0°和40°的纳米天线的扫描电镜图片。

b59421b0-b48a-11ee-8b88-92fbcf53809c.jpg

图2 纳米天线阵列SEM表征图

纳米阵列等离激元对光电探测增强效果

首先,对器件进行了微区光电流测试,测试的光路图如图3(a)所示,850 nm激光通过20倍物镜聚焦照射在器件上,光斑直径大小约1 μm,通过偏振片调节激光的线偏振方向和纳米结构x轴方向一致,如图2(a)所示x方向(与纳米结构中心轴y水平垂直)。研究人员测试了器件的暗电流,有纳米天线和没有纳米天线的暗电流基本一致(如图3(a)),可见曲线是典型的背靠背肖特基的电流电压特性曲线,金和硅以及硅和石墨烯都形成了肖特基接触。随后,挑选了纳米天线夹角为0°的纳米颗粒阵列研究光电流增强情况,图3(d)给出了有无纳米天线的器件,在改变激光功率时光电流变化趋势,随着功率从0.03 mW增加到1.86 mW,光电流逐渐增加并趋向饱和达到1.05 x 10⁻⁴ A,而没有天线的石墨烯/硅探测区域光电流为5.45 x 10⁻⁵ A,天线对光电流增强约2倍,有天线时光电流响应度为56 mA/W,相比商用的PIN结构硅探测器响应度低近一个数量级。在这里主要关注天线对探测性能提高的影响,没有在器件结构上做进一步的优化。

b5caf3fc-b48a-11ee-8b88-92fbcf53809c.jpg

图3 具有纳米天线结构的器件光电流表征

图4(a)给出了制备出的器件暗场的照片,为了研究颗粒间距以及周期和夹角对探测效果的影响,设计了三个区域的天线,分别为周期为1.2 μm纳米颗粒间距为40 nm和100 nm的Ⅰ和Ⅱ区,周期为1.75 μm纳米颗粒间距为40 nm的Ⅲ区,每一个区域从右到左,由上到下,夹角θ如图中所标注从0°到40°。图4(b)给出了1 mW 850 nm激光辐照下的光电流扫描图,从图中可见有纳米天线的探测区域光电流明显高于无纳米线天线的区域,周期为1.2 μm间距为100 nm的纳米颗粒阵列区域整体上光电流更大一些。

当研究纳米结构天线随着角度的变化对光电流强度影响规律时,发现角度增大过程中,整体上光电流不断增大,直到θ为40°达到最大,随后减小,最大增幅约为14%。然而,三种结构中一致地出现在θ为20°时,光电流随夹角变化存在一个谷,而此时光电流大小与夹角为0°时相当,如图4(c)所示。

b618f6ba-b48a-11ee-8b88-92fbcf53809c.jpg

图4 不同夹角纳米天线阵列的光电流表征

夹角对天线效果影响以及仿真结果

为了进一步理解光电流随夹角变化这一现象背后的物理过程,采用Lumerical中时域有限差分法(FDTD)进行仿真工作。图5(a)分别为该结构夹角θ从0°到40°的透射和吸收谱图,透射谱可以看到明显的法诺共振。当两个纳米颗粒靠近时,在光场激励下形成两个极化子(dipole),类似当氢原子靠近时轨道杂化一样,两个dipole进行杂化形成了成键和反成键态,而多个颗粒就形成了多体耦合结构(多聚体)。这样强耦合体系向平面泄露或者辐射光将会产生干涉形成新的分立的泄露模式,该模式和纳米颗粒等离激元模式相耦合产生法诺共振。从仿真结果看,随着角度增加,共振峰位以及强度没有明显变化;如图5(b)所示,夹角为16°和20°共振谱形,该谱形具有非对称的结构,类似法诺共振耦合谱,主峰附近低能量的振荡峰与多体耦合相关。

b65c7034-b48a-11ee-8b88-92fbcf53809c.jpg

图5 纳米天线透射光谱和和夹角关系

结论和讨论

基于石墨烯/硅肖特基探测器研究了金属纳米结构等离激元天线的夹角对光场增强的影响,整体上天线对光响应度实现了两倍的增强。当夹角从0°到90°变化时,光电流先增大,后来趋向饱和,当该夹角为40°时,光电流达到最大值,对应法诺共振最大的透射率,此时天线不仅汇聚光场能量还定向发射给探测器;当该夹角为20°时,光电流出现一个低谷,此时能量局域于低聚体内,金属损耗减弱了等离激元增强效果。可以进一步推测,泄漏场的干涉有望实现BIC,从而辐射能量得以消除,将能量集中于结构内,然而由于金属材料损耗比较大,又由于衬底介电常数以及吸收特性,无法进一步得到BIC现象。该工作通过时域有限差分法仿真和实验相结合研究了多个纳米颗粒组成的多聚体超构表面光电耦合效率的动态过程,为提高光电探测效率提供了一种重要的途径。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 红外探测器
    +关注

    关注

    5

    文章

    289

    浏览量

    18071
  • 电流电压
    +关注

    关注

    0

    文章

    202

    浏览量

    11842
  • 纳米天线
    +关注

    关注

    0

    文章

    4

    浏览量

    7955
  • 光电流
    +关注

    关注

    0

    文章

    19

    浏览量

    7874

原文标题:基于纳米金属阵列天线的石墨烯/硅近红外探测器

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    不同类型金属探测器比较

    金属探测器技术的发展为人类提供了一种有效的工具,用于探测地下或隐藏的金属物体。随着技术的进步,市场上出现了多种类型的金属
    的头像 发表于 11-29 11:16 521次阅读

    如何提高金属探测器探测

    要提高金属探测器探测率,可以从以下几个方面入手: 一、选择合适的金属探测器 技术性能 :选择技术性能先进的
    的头像 发表于 11-29 11:14 298次阅读

    金属探测器配件及其效果

    金属探测器作为一种高效的地下金属探测工具,其配件的质量和性能直接影响到探测的效果和准确性。 1. 探测
    的头像 发表于 11-29 10:29 227次阅读

    金属探测器使用技巧 水下金属探测器使用方法

    金属探测器的使用技巧和水下金属探测器的使用方法分别如下: 金属探测器的使用技巧 预热 :大多数仪
    的头像 发表于 11-29 10:27 282次阅读

    石墨发热油墨为汽车后视镜带来智能电加热保护

    Haydale石墨发热油墨采用了先进的石墨纳米材料,这是一种极为强大的导电材料。通过将石墨
    发表于 11-15 15:55

    被动红外探测器接线方法

    被动红外探测器(Passive Infrared Detector,简称PIR)是一种利用人体发出的红外辐射来检测人体移动的传感。它广泛应用于家庭、办公室、商场等场所的安全监控系统中
    的头像 发表于 09-20 11:40 502次阅读

    被动红外探测器与主动红外探测器的原理比较

    被动红外探测器(Passive Infrared Detector, PIR)和主动红外探测器(Active Infrared Detector, AID)是两种常见的安全监控设备,它
    的头像 发表于 09-20 11:38 965次阅读

    被动红外探测器和主动红外探测器的区别

    被动红外探测器和主动红外探测器是两种常见的安全监控设备,它们在防盗、监控、边界防护等方面有着广泛的应用。这两种探测器的主要区别在于它们检测
    的头像 发表于 09-20 11:35 1085次阅读

    金属探测器电路图 带Arduino的金属探测器设计

    金属探测器,作为一种应用广泛的电子仪器,凭借其独特的探测能力,在多个领域发挥着不可或缺的作用。从军事、安全、考古到工业、环保等,金属探测器
    的头像 发表于 07-04 17:53 2106次阅读
    <b class='flag-5'>金属</b><b class='flag-5'>探测器</b>电路图 带Arduino的<b class='flag-5'>金属</b><b class='flag-5'>探测器</b>设计

    探索红外热成像探测器的基础原理

    红外热成像探测器究竟是什么?它是如何工作的呢?让我们一起来揭秘。红外热成像探测器:神奇的热能揭示者红外
    的头像 发表于 07-03 16:06 819次阅读
    探索<b class='flag-5'>红外</b>热成像<b class='flag-5'>探测器</b>的基础原理

    石墨电容

    探索未来能量储存新篇章:高性能4.2V 5500F 2.6Ah石墨电容推荐 随着科技的飞速发展,我们对于能量储存的需求也日益增长。在众多的储能元件中,石墨电容以其独特的优势,正逐
    发表于 02-21 20:28

    金属探测器电路图分享

    金属探测器是一种应用广泛的探测器,主要用于探测金属物品。它可以通过电磁感应、X射线检测或微波检测等技术,对
    的头像 发表于 02-02 12:20 7394次阅读
    <b class='flag-5'>金属</b><b class='flag-5'>探测器</b>电路图分享

    金属探测器工作原理是什么 金属探测器能探多少米

    金属探测器是一种广泛应用于许多领域的电子设备,它能够探测和定位埋藏或隐藏在地下、水下等介质中的金属物体。金属
    的头像 发表于 01-25 14:36 5015次阅读

    红外宽带响应光电探测器性能显著提升助力健康监测

    红外探测能力强的光电探测器更有利于检测人体心率,而且探测范围覆盖红光与
    的头像 发表于 01-13 09:28 1229次阅读
    <b class='flag-5'>近</b><b class='flag-5'>红外</b>宽带响应光电<b class='flag-5'>探测器</b>性能显著提升助力健康监测

    什么是红外辐射?红外探测器的分类

    红外辐射是波长介于可见光与微波之间的电磁波,人眼察觉不到,红外探测器是可以将入射的红外辐射信号转变成电信号输出的器件,帮助人们看见未知的世界。本文将从分类、波段、材料等方面带大家详细了
    的头像 发表于 01-02 09:56 1891次阅读
    什么是<b class='flag-5'>红外</b>辐射?<b class='flag-5'>红外</b><b class='flag-5'>探测器</b>的分类