背景介绍
测试图如下,图中有个别米粒相互粘连,本文主要演示如何使用OpenCV用两种不同方法将其分割并计数。
方法一:基于分水岭算法
基于分水岭算法分割步骤如下:
【1】高斯滤波 + 二值化 +开运算
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray,(5,5),0) ret, binary= cv2.threshold(gray, 115, 255, cv2.THRESH_BINARY) kernel = np.ones((5, 5), np.uint8) binary=cv2.morphologyEx(binary,cv2.MORPH_OPEN,kernel,iterations=1) cv2.imshow('thres', binary)
【2】距离变换 + 提取前景
dist = cv2.distanceTransform(binary, cv2.DIST_L2, 3) dist_out = cv2.normalize(dist, 0, 1.0, cv2.NORM_MINMAX) cv2.imshow('distance-Transform', dist_out * 100) ret, surface = cv2.threshold(dist_out, 0.35*dist_out.max(), 255, cv2.THRESH_BINARY) cv2.imshow('surface', surface) sure_fg = np.uint8(surface)# 转成8位整型 cv2.imshow('Sure foreground', sure_fg)
【3】标记位置区域
# 未知区域标记为0 markers[unknown == 255] = 0 kernel = np.ones((5, 5), np.uint8) binary = cv2.morphologyEx(binary, cv2.MORPH_DILATE, kernel, iterations=1) unknown = binary - sure_fg cv2.imshow('unknown',unknown)
【4】分水岭算法分割
markers = cv2.watershed(img, markers=markers) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(markers)
【5】轮廓查找和标记
contours,hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) forcntincontours: M = cv2.moments(cnt) cx = int(M['m10']/M['m00']) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00'])#轮廓重心 cv2.drawContours(img,contours,-1,colors[rd.randint(0,5)],2) cv2.drawMarker(img, (cx,cy),(0,255,0),1,8,2)
方法二:轮廓凸包缺陷方法
基于轮廓凸包缺陷分割步骤如下:
【1】高斯滤波 + 二值化 +开运算
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray,(5,5),0) ret, binary= cv2.threshold(gray, 115, 255, cv2.THRESH_BINARY) kernel=np.ones((5,5),np.uint8) binary=cv2.morphologyEx(binary,cv2.MORPH_OPEN,kernel,iterations=1) cv2.imshow('thres', binary)
【2】轮廓遍历 + 筛选轮廓含有凸包缺陷的轮廓
contours,hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in contours: hull = cv2.convexHull(cnt,returnPoints=False)#默认returnPoints=True defects = cv2.convexityDefects(cnt,hull) #print defects pt_list = [] if defects is not None: flag = False for i in range(0,defects.shape[0]): s,e,f,d = defects[i,0] if d > 4500: flag = True
【3】将距离d最大的两个凸包缺陷点连起来,将二值图中对应的粘连区域分割开,红色圆标注为分割开的部分
if len(pt_list) > 0: cv2.line(binary,pt_list[0],pt_list[1],0,2) cv2.imshow('binary2',binary)
【4】重新查找轮廓并标记结果
contours,hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in contours: try: M = cv2.moments(cnt) cx = int(M['m10']/M['m00']) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00'])#轮廓重心 cv2.drawContours(img,cnt,-1,colors[rd.randint(0,5)],2) cv2.drawMarker(img, (cx,cy),(0,0,255),1,8,2) except: pass
审核编辑:刘清
-
高斯滤波
+关注
关注
0文章
18浏览量
8063 -
OpenCV
+关注
关注
31文章
634浏览量
41336
原文标题:实战 | OpenCV两种不同方法实现粘连大米分割计数(步骤 + 代码)
文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论