1 【GD32F303红枫派开发板使用手册】第十六讲 USART-DMA串口收发实验-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【GD32F303红枫派开发板使用手册】第十六讲 USART-DMA串口收发实验

聚沃科技 2024-06-15 09:54 次阅读
wKgaomZVdiiAfR9BAB3mDFhHnZc972.png

16.1实验内容

通过本实验主要学习以下内容:

16.2实验原理

16.2.1串口DMA工作原理

在前面ADC章节中,我们介绍了DMA的工作原理,这里就不多做介绍。从GD32F303用户手册中可以查到,各串口的TX和RX分别对应DMA的不同通道,比如USART0的TX对应DMA0的通道3,而RX对应DMA0的通道4。

当需要使用DMA发送时,需要配置DMA工作为内存到外设的模式,DMA目标地址需要设置为串口的数据寄存器,当DMA使能后,一旦串口的TBE(发送空)标志位为1,则DMA自动从内存中搬运数据到串口数据寄存器中。

当需要使用DMA接受时,需要配置DMA工作为外设到内存的模式,DMA的源地址需要设置为串口的数据寄存器,当DMA使能,一旦串口收到一个字节数据,RBNE(接受非空)标志位为1,则DMA自动将数据寄存器中的数据搬运到内存中。

16.2.2串口寄存器介绍

串口有几个非常重要的寄存器需要读者理解,这里单独用一个章节来介绍。

数据寄存器(USART_DATA)

wKgZomZCzTOAdz_OAAAuTeg2cA0146.png

该寄存器虽然只有一个,但内部是映射为发送和接受两个寄存器。

发送时,除了发送数据寄存器,还有一个移位寄存器,当数据写入数据寄存器中,移位寄存器空闲的情况下,数据从数据寄存器中转移到移位寄存器,移位寄存器按照低bit——高bit的顺序将数据移位到IO口上。

接收时,接收到的数据保存在数据寄存器中,CPU或DMA可以从该寄存器中读接收到的数据。

状态寄存器0(USART_STAT0 )

wKgaomZCzUOAbIljAAA9A6YgC4w762.png

我们需要特别理解TBE、TC、RBNE、IDLE、OREE这几位。

  1. TBE(发送空):这个位置“1”表示现在可以往数据寄存器中写数据了,当移位寄存器空闲时,写入到数据寄存器中的数据则会转移到移位寄存器中,串口开始对外发送数据;
  2. TC(发送完成):发送数据时,当数据寄存器和移位寄存器都为空时,表示所有的数据都已经完成了,则TC置“1”,所以当连续发数据时,最后一个字节从移位寄存器中发送完,TC才会置起。
  3. RBNE(接受非空):当串口接受到一个字节数据,RBNE置“1”,此时CPU可以去数据寄存器中取数据,当使用了DMA接受,DMA自动将数据寄存器中数据搬走,当数据寄存器数据被读走/搬走,RBNE位自动清“0”;
  4. IDLE(空闲):该标志位用于检测接受空闲,当串口接受最后一个字节后,再往后一个字节时间内,没有接受到新的数据,则该位置“1”;

IDLE一般用于串口DMA接受中,DMA接受中,MCU无法知道发送方的数据个数,所以可以通过判断IDLE位(或IDLE中断)来判断发送方一帧数据发送结束了。

  1. OREE(溢出错误):当RBNE置位的情况,又接收到一个字节数据,则OREE位置“1”。

16.3硬件设计

本实验使用DMA进行串口发送和接收,仍然使用USBUART接口,硬件设计见上一章。

16.4代码解析

16.4.1串口DMA发送函数

在driver_uart.c中定义了串口DMA发送函数driver_uart_dma_transmit:

C
Drv_Err driver_uart_dma_transmit(typdef_uart_struct *uartx,uint8_t *pbuff,uint16_t length)
{
Drv_Err uart_state=DRV_ERROR;

uint32_t timeout = driver_tick;
while(uartx->uart_control.Com_Flag.Bits.SendState==1){
if((timeout+UART_TIMEOUT_MS) <= driver_tick) {              
uartx->uart_control.Com_Flag.Bits.SendState=0;
return DRV_ERROR;
}
}
uartx->uart_control.Com_Flag.Bits.SendSucess=0;
uartx->uart_control.Com_Flag.Bits.SendState=1;
uartx->uart_control.p_Send=pbuff;
uartx->uart_control.SendSize=length;
uartx->uart_control.SendCount=0;
uart_state=driver_dma_flag_wait_timeout(uartx->uart_tx_dma,DMA_FLAG_FTF,SET);
usart_dma_transmit_config(uartx->uart_x,USART_DENT_DISABLE);
driver_dma_start(uartx->uart_tx_dma,pbuff,length);
usart_flag_clear(uartx->uart_x,USART_FLAG_TC);
usart_dma_transmit_config(uartx->uart_x,USART_DENT_ENABLE);
usart_interrupt_enable(uartx->uart_x,USART_INT_TC);
return uart_state;
}

16.4.2串口DMA接收函数

在driver_uart.c中定义了串口DMA接收函数driver_uart_dma_receive:

C
Drv_Err driver_uart_dma_receive(typdef_uart_struct *uartx,uint8_t *pbuff,uint16_t length)
{
Drv_Err uart_state=DRV_SUCCESS;
uint32_t timeout = driver_tick;
while(uartx->uart_control.Com_Flag.Bits.RecState==1){
if((timeout+UART_TIMEOUT_MS) <= driver_tick) {              
uartx->uart_control.Com_Flag.Bits.RecState=0;
return DRV_ERROR;
}
}
uartx->uart_control.Com_Flag.Bits.RecSuccess=0;
uartx->uart_control.Com_Flag.Bits.RecState=1;
uartx->uart_control.p_Rec=pbuff;
uartx->uart_control.RecSize=length;
uartx->uart_control.RecCount=0;
usart_dma_receive_config(uartx->uart_x,USART_DENR_DISABLE);
driver_dma_start(uartx->uart_rx_dma,pbuff,length);
USART_STAT0(uartx->uart_x);
usart_data_receive(uartx->uart_x);
usart_interrupt_flag_clear(uartx->uart_x,USART_INT_FLAG_IDLE);
usart_interrupt_enable(uartx->uart_x,USART_INT_IDLE);
usart_dma_receive_config(uartx->uart_x,USART_DENR_ENABLE);
return uart_state;
}

16.4.3main函数实现

以下为main函数代码:

C
int main(void)
{
delay_init();

//初始化UART为DMA模式,注册接受完成(IDLE)回调函数
BOARD_UART.uart_mode_tx=MODE_DMA;
BOARD_UART.uart_mode_rx=MODE_DMA;
BOARD_UART.uart_idle_callback=user_receive_complete_callback;
bsp_uart_init(&BOARD_UART);
nvic_irq_enable(USART0_IRQn,2,0);
delay_ms(1000);
printf("uart dma mode sends and receives loopback packets of indefinite length.\r\n");

//配置UART接受,最长100byte
driver_uart_dma_receive(&BOARD_UART,uart_rec_buff,100);

while (1)
{
//查询到接受完成回调函数标志
if(uart_receive_complete_flag==SET)
{
uart_receive_complete_flag=RESET;

//发送刚接受到的数据
driver_uart_dma_transmit(&BOARD_UART,uart_send_buff,uart_receive_count);
}
}
}

本例程main函数首先进行了延时函数初始化,再初始化UART为DMA模式,接着配置串口BOARD_UART,开启串口中断NVIC,这里使用到了IDLE中断,用来接受不定长数据,然后配置串口DMA接受,最长100个字节,所以我们可以给串口发送100个字节以下长度的数据。在while(1)循环中循环查询uart_receive_complete_flag标志位,当该标志位为“SET”时,表示IDLE中断被触发,一帧数据接受完,最后将接收到的帧数据通过DMA发送方式原封不动发送到串口上。

16.4.4中断函数

在bsp_uart.c中定义了串口中断处理函数

C
void USART0_IRQHandler(void)
{
driver_uart_int_handler(&BOARD_UART);
}

在driver_uart.c中定义了driver_uart_int_handler函数:

C
Drv_Err driver_uart_int_handler(typdef_uart_struct *uartx)
{
Drv_Err uart_state=DRV_SUCCESS;
if(usart_interrupt_flag_get(uartx->uart_x,USART_INT_FLAG_RBNE)!=RESET)
{
if(uartx->uart_control.RecCount < uartx->uart_control.RecSize){
uartx->uart_control.p_Rec[uartx->uart_control.RecCount]=usart_data_receive(uartx->uart_x);
uartx->uart_control.RecCount++;
}
else{
usart_data_receive(uartx->uart_x);
uart_state=DRV_ERROR;
//err 溢出
}
if(uartx->uart_rbne_callback!=NULL){
uartx->uart_rbne_callback(uartx);
}
//callback
if(uartx->uart_control.RecCount == uartx->uart_control.RecSize){
uartx->uart_control.Com_Flag.Bits.RecSuccess=1;
uartx->uart_control.Com_Flag.Bits.RecState=0;
uartx->uart_control.RecCount=0;
}
}
if(usart_interrupt_flag_get(uartx->uart_x,USART_INT_FLAG_IDLE)!=RESET)
{
usart_interrupt_flag_clear(uartx->uart_x,USART_INT_FLAG_IDLE);
USART_STAT0(uartx->uart_x);
USART_DATA(uartx->uart_x);

if( (uartx->uart_mode_rx==MODE_INT && uartx->uart_control.RecCount>0) \
||(uartx->uart_mode_rx==MODE_DMA && dma_transfer_number_get(uartx->uart_rx_dma->dmax,uartx->uart_rx_dma->dma_chx)!=uartx->uart_control.RecSize))
{
uartx->uart_control.Com_Flag.Bits.RecSuccess=1;
uartx->uart_control.Com_Flag.Bits.RecState=0;

if(uartx->uart_mode_rx==MODE_DMA){
uartx->uart_control.RecCount=uartx->uart_control.RecSize-dma_transfer_number_get(uartx->uart_rx_dma->dmax,uartx->uart_rx_dma->dma_chx);
}
//callback
if(uartx->uart_idle_callback!=NULL){
uartx->uart_idle_callback(uartx);
}
}

}

if(usart_interrupt_flag_get(uartx->uart_x,USART_INT_FLAG_TBE)!=RESET)
{
usart_data_transmit(uartx->uart_x,uartx->uart_control.p_Send[uartx->uart_control.SendCount]);
uartx->uart_control.SendCount++;

if(uartx->uart_tbe_callback!=NULL){
uartx->uart_tbe_callback(uartx);
}

if(uartx->uart_control.SendCount >= uartx->uart_control.SendSize)
{
uartx->uart_control.SendCount=0;
usart_interrupt_disable(uartx->uart_x, USART_INT_TBE);
usart_interrupt_enable(uartx->uart_x, USART_INT_TC);
}
}

if(usart_interrupt_flag_get(uartx->uart_x,USART_INT_FLAG_TC)!=RESET)
{
usart_interrupt_disable(uartx->uart_x, USART_INT_TC);
usart_flag_clear(uartx->uart_x,USART_FLAG_TC);

if( !(uartx->uart_mode_rx==MODE_DMA && dma_transfer_number_get(uartx->uart_tx_dma->dmax,uartx->uart_tx_dma->dma_chx)!=0) )
{
uartx->uart_control.Com_Flag.Bits.SendSucess=1;
uartx->uart_control.Com_Flag.Bits.SendState=0;

if(uartx->uart_tc_callback!=NULL){
uartx->uart_tc_callback(uartx);
}

uartx->uart_control.SendCount=0;
}
}

if(usart_flag_get(uartx->uart_x,USART_FLAG_ORERR)==SET)
{
usart_flag_clear(uartx->uart_x,USART_FLAG_ORERR);
USART_STAT0(uartx->uart_x);
USART_DATA(uartx->uart_x);
uart_state=DRV_ERROR;
}

return uart_state;

}

16.5实验结果

使用USB-TypeC线,连接电脑和板上USB to UART口后,使用串口调试助手发送一帧数据到MCU,MCU会将这帧数据回发到串口调试助手中。

wKgZomZs8_GAHWEFAAAEB2USNVY682.pngwKgZomZs8_aAZSKSAAAIwyq5TP0056.png

教程GD32 MCU方案商聚沃科技原创发布,了解更多GD32 MCU教程,关注聚沃科技官网

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 单片机
    +关注

    关注

    6034

    文章

    44554

    浏览量

    634554
  • 嵌入式
    +关注

    关注

    5082

    文章

    19104

    浏览量

    304759
  • dma
    dma
    +关注

    关注

    3

    文章

    560

    浏览量

    100541
  • 开发板
    +关注

    关注

    25

    文章

    5032

    浏览量

    97370
  • USART
    +关注

    关注

    1

    文章

    195

    浏览量

    30834
收藏 人收藏

    评论

    相关推荐

    STM32CUBEMX开发GD32F303(8)----USART收发配置

    本章STM32CUBEMX配置STM32F103,并且在GD32F303中进行开发,同时通过GD32303C_START开发板内进行验证。
    的头像 发表于 11-29 10:40 3169次阅读
    STM32CUBEMX<b class='flag-5'>开发</b><b class='flag-5'>GD32F303</b>(8)----<b class='flag-5'>USART</b><b class='flag-5'>收发</b>配置

    STM32CUBEMX开发GD32F303(9)----USART通过DMA收发

    概述 本章STM32CUBEMX配置STM32F103,并且在GD32F303中进行开发,同时通过GD32303C_START开发板内进行验
    的头像 发表于 11-29 11:15 2099次阅读
    STM32CUBEMX<b class='flag-5'>开发</b><b class='flag-5'>GD32F303</b>(9)----<b class='flag-5'>USART</b>通过<b class='flag-5'>DMA</b><b class='flag-5'>收发</b>

    GD32F303】星空介绍

    一、开发板介绍星空GD开发板是由旗点科技推出的一款GD32开发板,板载
    发表于 09-11 17:55

    【星空GD32F303开发板试用体验】开箱+环境搭建

    Watchpoint: 4Load "G:\\星空GD32F303开发板\\03 例程\\Project\\04_USART_Printf\\MDK-ARM\\output
    发表于 10-18 14:15

    【星空GD32F303开发板试用体验】开箱+环境搭建

    完全,APM32F0xx_SDK解包,到星空GD32F303开发板\03 例程\Project\04_USART_printf\MDK-A
    发表于 11-02 15:36

    【星空GD32F303开发板试用体验】+板卡概览

    本帖最后由 cooldog123pp 于 2021-11-6 21:07 编辑 星空GD开发板是由旗点科技推出的一款GD32开发板
    发表于 11-06 21:05

    星空GD32F303开发板的相关资料下载

    一、开发板介绍星空GD开发板是由旗点科技推出的一款GD32开发板,板载
    发表于 12-10 08:27

    GD32F303开发板介绍

    目录如下,持续更新~~【1】星空GD32F303开发板介绍 与 文章目录1. 串口基础概念USART数据格式一般分为启动位、数据帧、可能的
    发表于 01-17 08:06

    STM32CUBEMX开发GD32F303(11)----ADC在DMA模式下扫描多个通道

    本章STM32CUBEMX配置STM32F103,并且在GD32F303中进行开发,同时通过GD32303C_START开发板内进行验证。
    的头像 发表于 11-30 10:59 2336次阅读
    STM32CUBEMX<b class='flag-5'>开发</b><b class='flag-5'>GD32F303</b>(11)----ADC在<b class='flag-5'>DMA</b>模式下扫描多个通道

    GD32F303固件库开发

    的可以加群申请:615061293 。 GD32F303固件库开发(1)----前期准备与烧录 使用GDLINK、jlink、串口下载程序到GD芯片。 [https://blog.cs
    的头像 发表于 07-27 09:27 1161次阅读
    <b class='flag-5'>GD32F303</b>固件库<b class='flag-5'>开发</b>

    GD32F303红枫开发板使用手册】第二 GPIO-流水灯实验

    GD32F303系列MCU最多可支持 112 个通用I/O 引脚(GPIO),分别为 PA0 ~ PA15, PB0 ~ PB15, PC0 ~ PC15,PD0 ~ PD15, PE0
    的头像 发表于 05-29 10:02 1625次阅读
    【<b class='flag-5'>GD32F303</b><b class='flag-5'>红枫</b><b class='flag-5'>派</b><b class='flag-5'>开发板</b><b class='flag-5'>使用手册</b>】第二<b class='flag-5'>讲</b> GPIO-流水灯<b class='flag-5'>实验</b>

    GD32F303红枫开发板使用手册】第三 GPIO-按键查询检测实验

    GD32F303系列MCU GPIO输入配置结构如下图所示,输入可配置上下拉电阻,通过施密特触发器后可通过备用功能输入或者通过输入状态寄存器进行读取。
    的头像 发表于 05-30 10:02 851次阅读
    【<b class='flag-5'>GD32F303</b><b class='flag-5'>红枫</b><b class='flag-5'>派</b><b class='flag-5'>开发板</b><b class='flag-5'>使用手册</b>】第三<b class='flag-5'>讲</b> GPIO-按键查询检测<b class='flag-5'>实验</b>

    GD32F303红枫开发板使用手册】第五 FMC-片内Flash擦写读实验

    MC即Flash控制器,其提供了片上Flash操作所需要的所有功能,在GD32F303系列MCU中,Flash前256K字节空间内, CPU执行指令零等待,具有相同主频下最快的代码执行效率。FMC也
    的头像 发表于 06-02 10:05 765次阅读
    【<b class='flag-5'>GD32F303</b><b class='flag-5'>红枫</b><b class='flag-5'>派</b><b class='flag-5'>开发板</b><b class='flag-5'>使用手册</b>】第五<b class='flag-5'>讲</b> FMC-片内Flash擦写读<b class='flag-5'>实验</b>

    GD32F303红枫开发板使用手册第十 USART-中断串口收发实验

    前面章节中我们已经学习了串口的状态标志位,本实验就是使用TBE中断和RBNE中断来实现中断收发数据,实验原理是RBNE中断用来接受数据,IDLE中断用于判断发送方数据结束,TBE中断用
    的头像 发表于 06-17 09:53 1026次阅读
    【<b class='flag-5'>GD32F303</b><b class='flag-5'>红枫</b><b class='flag-5'>派</b><b class='flag-5'>开发板</b><b class='flag-5'>使用手册</b>】<b class='flag-5'>第十</b>七<b class='flag-5'>讲</b> <b class='flag-5'>USART</b>-中断<b class='flag-5'>串口</b><b class='flag-5'>收发</b><b class='flag-5'>实验</b>

    GD32F303红枫开发板使用手册】第二十 SPI-SPI NAND FLASH读写实验

    通过本实验主要学习以下内容: •SPI通信协议,参考19.2.1东方红开发板使用手册GD32F303 SPI操作方式,参考19.2.2东方红
    的头像 发表于 06-20 09:50 880次阅读
    【<b class='flag-5'>GD32F303</b><b class='flag-5'>红枫</b><b class='flag-5'>派</b><b class='flag-5'>开发板</b><b class='flag-5'>使用手册</b>】第二十<b class='flag-5'>讲</b> SPI-SPI NAND FLASH读写<b class='flag-5'>实验</b>