阿丘科技「AI干货补给站」推出系列文章——《工业AI视觉检测项目入门指南》,这一系列内容将AI视觉检测项目的实施分为四个阶段:制定计划、数据收集、模型构建以及工厂验收,分别阐述各阶段的实施经验以及注意事项,为从业者提供知识积累,推动AI视觉应用的稳健落地。
本期亮点预告
在现代制造业中,深度学习正逐渐成为推动智能化转型的重要力量。特别是在视觉检测领域,深度学习技术的应用显著提高了产品质量和生产效率。然而,任何基于深度学习的检测方案离不开高质量的数据支持。数据收集与标注,作为深度学习项目中的关键环节,其重要性不言而喻。本文将深入探讨AI视觉检测项目在数据收集阶段的实用策略和核心考量点,为从业者提供有价值的参考。
- 数据收集及图像标注的意义
- 高质量数据的必备要素
- 持续收集数据的重要性
- ……
文章摘要速览
当团队将检测需求和检测项目梳理完毕,接下来的工作便是进行光学方案及算法方案设计。这一步骤完成后,便可以进入数据收集阶段。在使用基于深度学习的检测软件时,将已标注的图像数据用于训练和优化AI模型,便能使其准确判断良品和不良品。
在收集高质量图像数据的过程中,有五大关键因素:准确的数据标注、数据的均衡分布、数据的特征充分性、足够的数据量,以及数据的实时更新。同时满足这五点要求,才能确保所开发的AI视觉解决方案能够在真实环境中达到预期效果,进而提升整个制造流程的智能化水平。
值得注意的是,数据的收集并非一蹴而就,而是一个持续迭代、不断优化的过程,它不仅限于项目启动初期,而是贯穿于整个项目周期。生产线本身是一个动态变化的系统,产品迭代、设备升级、环境变化等因素都会影响到生产质量。为了要求数据集能够实时反映这些变化,应持续收集数据来保持模型的时效性和准确性。
-
检测
+关注
关注
5文章
4480浏览量
91442 -
工业
+关注
关注
3文章
1824浏览量
46517 -
数据收集
+关注
关注
0文章
72浏览量
11158
发布评论请先 登录
相关推荐
评论