1 人工智能发展需要新的芯片技术-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能发展需要新的芯片技术

中科院半导体所 来源:悦智网 2024-12-07 09:49 次阅读

人工智能的繁荣发展需要新的芯片技术

1997年,IBM的“深蓝”超级计算机打败了国际象棋世界冠军加里•卡斯帕罗夫。这是超级计算机技术的一次突破性展示,也首次让人们看到了高性能计算有一天可能超越人类智能。在接下来的十年里,我们开始将人工智能用于许多实际任务,如面部识别、语言翻译以及电影和商品推荐

又过了15年,人工智能已经发展到可以“结合知识”的地步。ChatGPT和Stable Diffusion等生成式人工智能可以写诗、创作艺术作品、诊断疾病、编写总结报告和计算机代码,甚至可以设计出与人类设计相媲美的集成电路

人工智能很有可能成为未来所有人类活动的数字助手。ChatGPT就是一个很好的例子,它展示了人工智能有助于推动高性能计算的普及性应用,为社会中的每一个人带来益处。

所有这些奇妙的人工智能应用都归功于3个因素:高效机器学习算法的创新、可用于训练神经网络的海量数据,以及通过半导体技术发展实现的节能计算进步。虽然最后这一项贡献无处不在,但它在生成式人工智能革命中的重要性却未得到应有的重视。

在过去30年里,人工智能的重要里程碑都是通过当时最先进的半导体技术实现的,没有它们,这些里程碑就不可能实现。深蓝计算机是通过结合0.6微米和0.35微米节点的芯片制造技术实现的;赢得ImageNet竞赛并开启当前机器学习时代的深度神经网络是用40纳米技术实现的;AlphaGo使用28纳米技术征服了围棋世界,初版ChatGPT是在采用5纳米技术的计算机上训练的。而最新版的ChatGPT则依靠使用了更先进的4纳米技术的服务器提供支持。从软件和算法到架构、电路设计和设备技术,人工智能所涉及的每一层计算机系统都是提高人工智能性能的倍增器。但公平地说,基础晶体管技术是实现上层进步的关键。

如果人工智能革命要继续按照当前的速度发展下去,将需要半导体行业提供更多的支持。10年内,它将需要拥有1万亿个晶体管的GPU,是目前常见GPU所拥有的晶体管数量的10倍。

人工智能模型规模的持续增长

过去5年里,人工智能训练所需的计算能力和内存访问量提高了几个数量级。例如,训练GPT-3需要相当于每秒超过5000千万亿次的运算持续一整天,并需要3万亿字节(3TB)的内存容量。

新的生成式人工智能应用所需的计算能力和内存访问量还在继续快速增长。现在,我们需要回答一个紧迫的问题:半导体技术如何才能跟上这一步伐?

98a6df64-b2f1-11ef-93f3-92fbcf53809c.jpg

从集成器件到集成芯粒

自集成电路发明以来,半导体技术一直致力于缩小特征尺寸,以便将更多的晶体管塞进极小的芯片中。今天,集成已经上升到了一个更高的层次;我们将超越二维缩放,进入三维系统集成。我们正在将许多芯片组装成一个紧密集成的大规模互连系统。这是半导体技术集成的范式转变。

在人工智能时代,系统能力直接与系统集成的晶体管数量成正比。限制晶体管集成数量的主要因素之一是光刻芯片制造工具被设计成只能制造不超过约800平方毫米的集成电路,这被称为“光罩限制”。但现在,我们可以将集成系统的尺寸扩展到光刻技术的光罩限制之外。通过将几块芯片连接到一个更大的中介层(一块内置互连的硅片)上,我们可以集成一个能够比单芯片包含更多器件的系统。例如,台积电的基板上晶圆芯片(CoWoS)技术可以容纳多达6个光罩范围的计算芯片,以及十几个高带宽存储器(HBM)芯片。

98bd2a8a-b2f1-11ef-93f3-92fbcf53809c.jpg

高带宽存储器是另一种对人工智能而言越来越重要的关键半导体技术:该技术可将芯片堆叠在一起进行系统集成,台积电称之为“集成片上系统”(SoIC)。高带宽存储器由一堆动态随机存取存储器(DRAM)垂直互连芯片组成,位于控制逻辑集成电路之上。它使用了称为“硅通孔”的垂直互连来让信号通过每块芯片,并使用了焊锡球连接内存芯片。如今,高性能图形处理器(GPU)广泛使用了高带宽存储器。

未来,3D 系统级集成单芯片技术可以为目前的常规高带宽存储器技术提供替代方案,在堆叠芯片之间实现更密集的垂直互连。最新进展显示,高带宽存储器测试结构使用混合键合堆叠了12层芯片,相较于目前使用的焊锡球,这种铜对铜连接实现了更高的密度。这种内存系统在低温下在较大的基础逻辑芯片之上进行键合,总厚度仅为600微米。

随着由大量芯片组成的高性能计算系统运行大型人工智能模型,高速有线通信可能很快会限制计算速度。如今,数据中心已经在使用光互连来连接服务器机架。很快,我们将需要基于硅光子技术与GPU和中央处理器(CPU)一起封装的光学接口。它们将提高带宽的能源效率和面积效率,实现直接的GPU到GPU光学通信,使成百上千台服务器像一个具有统一内存的巨型GPU一样工作。人工智能应用的需求将让硅光子技术将成为半导体行业最重要的使能技术之一。

迈向万亿晶体管GPU

如前所述,用于人工智能训练的典型GPU芯片已经达到了光罩范围限制,其晶体管数量约为1000亿个。要持续晶体管数量增多的趋势,将需要用2.5D或3D集成互连的多芯片来执行计算。通过基板上晶圆芯片、集成片上系统或相关的先进封装技术集成多个芯片,可以使每个系统的总晶体管数量远远超过单块芯片所能容纳芯片的数量。我们预测,在10年内,一个多芯粒GPU将拥有超过1万亿个晶体管。

我们需要在一个3D堆栈中将所有这些芯粒连接起来,不过幸运的是,业界已经能够迅速缩小垂直互连的间距,从而提高连接的密度,而且还有很大的进步空间。我们认为互连密度完全可以提高一个数量级,甚至更多。

GPU的能效性能趋势

那么,这些硬件创新技术将如何提升系统性能?

如果关注能效性能(EEP)这一指标的稳步提升,我们便可以从服务器GPU中看到这一趋势。能效性能是系统能源效率和速度的综合衡量指标。在过去15年里,半导体行业的能效性能每两年提高大约3倍。我们相信这一趋势将按照历史速度继续。它将受到来自多方面创新的推动,包括新材料、设备和集成技术、极紫外光刻、电路设计、系统架构设计以及所有这些技术元素的协同优化等。

特别是我们在此讨论的先进封装技术,它将推动能效性能的提高。此外,系统技术协同优化等概念也会越来越重要,系统技术协同优化是将GPU的不同功能部分分散到各自的芯粒上,并使用性能最佳、最经济的技术来构建每个部分。

3D集成电路的米德-康维时刻

1978年,加州理工学院教授卡沃•米德(Carver Mead)和施乐帕洛阿尔托研究中心的琳•康维(Lynn Conway)发明了一种用于集成电路的计算机辅助设计方法。他们使用了一套设计规则来描述芯片尺寸,使工程师无须深入了解工艺技术就能轻松设计超大规模集成电路。

现在,3D芯片设计也需要类似的能力。如今的设计师需要了解芯片设计、系统架构设计以及软硬件优化。制造商需要了解芯片技术、3D集成电路技术和先进封装技术。正如1978年那样,我们再次需要一种描述这些技术的通用语言,让电子设计工具能够理解这些技术。这种硬件描述语言可以让设计师自由地进行3D集成电路系统设计,而不必考虑底层技术。这种语言已经在发展之中了,一种名为3Dblox的开源标准已经被当今大多数技术公司和电子设计自动化公司接受。

隧道尽头的未来

在人工智能时代,半导体技术是推动新的人工智能能力和应用发展的关键因素。新的GPU不再受制于过去的标准尺寸和形式因素。新的半导体技术不再局限于在二维平面上来缩小下一代晶体管。人工智能集成系统可以由尽可能多的节能晶体管、专用计算工作负载的高效系统架构以及软硬件优化关系组成。

在过去50年里,半导体技术的发展就像在隧道中行走。前方的道路是清晰的,因为有一条明确的路径,而且大家都知道需要缩小晶体管。

现在,我们已经走到了隧道的尽头,之后的半导体技术将越来越难开发。然而在隧道之外,还有更多的可能性在等待着我们。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4729

    浏览量

    128882
  • 晶体管
    +关注

    关注

    77

    文章

    9681

    浏览量

    138070
  • 人工智能
    +关注

    关注

    1791

    文章

    47182

    浏览量

    238192

原文标题:通往万亿晶体管GPU之路

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    了重要作用。在未来,随着嵌入式系统和人工智能技术的不断进步,我们可以预见更多创新应用的出现,为社会发展和生活品质的提升带来更多可能性。
    发表于 11-14 16:39

    LLM技术人工智能发展的影响

    随着人工智能技术的飞速发展,大型语言模型(LLM)技术已经成为推动AI领域进步的关键力量。LLM技术通过深度学习和自然语言处理技术,使得机器
    的头像 发表于 11-08 09:28 343次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    ,推动科学研究的深入发展。 总结 通过阅读《AI for Science:人工智能驱动科学创新》第二章,我对AI for Science的技术支撑有了更加全面和深入的理解。我深刻认识到AI在科学研究中
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在
    发表于 09-28 11:00

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是个需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    呈现、产业展览、技术交流、学术论坛于一体的世界级人工智能合作交流平台。本次大会暨博览会由工业和信息化部政府采购中心、广东省工商联、前海合作区管理局、深圳市工信局等单位指导,深圳市人工智能产业协会主办
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术发展提供有力支持。
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    Aidlite-SDK模型推理 https://v2.docs.aidlux.com/sdk-api/aidlite-sdk/aidlite-python 人工智能 5G AIoT技术实践入门与探索_V2 59分
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    https://t.elecfans.com/v/27186.html *附件:引体向上测试案例_20240126.pdf 人工智能 工业检测:芯片模组外观检测实训part1 11分40秒 https
    发表于 04-01 10:40

    人工智能芯片封装新篇章:先进技术的领航者

    随着人工智能(AI)技术的飞速发展,AI芯片作为支撑AI算法运行的核心硬件,其性能要求日益提高。为满足复杂AI算法的高效运行需求,AI芯片
    的头像 发表于 03-14 09:35 803次阅读
    <b class='flag-5'>人工智能</b><b class='flag-5'>芯片</b>封装新篇章:先进<b class='flag-5'>技术</b>的领航者

    嵌入式人工智能的就业方向有哪些?

    于工业、农业、医疗、城市建设、金融、航天军工等多个领域。在新时代发展背景下,嵌入式人工智能已是大势所趋,成为当前最热门的AI商业化途径之一。
    发表于 02-26 10:17