1 高通量测序技术及原理介绍-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高通量测序技术及原理介绍

PoisonApple 来源:网络整理 2018-02-28 13:49 次阅读

高通量测序技术(High-throughput sequencing)又称“下一代”测序技术(“Next-generation” sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。

高通量测序技术应用

测序技术推进科学研究的发展。随着第二代测序技术的迅猛发展,科学界也开始越来越多地应用第二代测序技术来解决生物学问题。比如在基因组水平上对还没有参考序列的物种进行从头测序(de novo sequencing),获得该物种的参考序列,为后续研究和分子育种奠定基础;对有参考序列的物种,进行全基因组重测序(resequencing),在全基因组水平上扫描并检测突变位点,发现个体差异的分子基础。在转录组水平上进行全转录组测序(whole transcriptome resequencing),从而开展可变剪接、编码序列单核苷酸多态性(cSNP)等研究;或者进行小分子RNA测序(small RNA sequencing),通过分离特定大小的RNA分子进行测序,从而发现新的microRNA分子。在转录组水平上,与染色质免疫共沉淀(ChIP)和甲基化DNA免疫共沉淀(MeDIP)技术相结合,从而检测出与特定转录因子结合的DNA区域和基因组上的甲基化位点。

这边需要特别指出的是第二代测序结合微阵列技术而衍生出来的应用--目标序列捕获测序技术(Targeted Resequencing)。这项技术首先利用微阵列技术合成大量寡核苷酸探针,这些寡核苷酸探针能够与基因组上的特定区域互补结合,从而富集到特定区段,然后用第二代测序技术对这些区段进行测序。目前提供序列捕获的厂家有Agilent和Nimblegen ,应用最多的是人全外显子组捕获测序。科学家们目前认为外显子组测序比全基因组重测序更有优势,不仅仅是费用较低,更是因为外显子组测序的数据分析计算量较小,与生物学表型结合更为直接。

目前,高通量测序开始广泛应用于寻找疾病的候选基因上。内梅亨大学的研究人员使用这种方法鉴定出Schinzel-Giedion 综合征中的致病突变,Schinzel-Giedion综合征是一种导致严重的智力缺陷、肿瘤高发以及多种先天性畸形的罕见病。他们使用Agilent SureSelect序列捕获和SOLiD对四位患者的外显子组进行测序,平均覆盖度为43倍,读长为50 nt,每个个体产生了2.7-3 GB可作图的序列数据。他们聚焦于全部四位患者都携带变异体的12个基因,最终将候选基因缩小至1个。而贝勒医学院基因组测序中心也计划对15种以Science杂志年度十大科学突破上疾病进行研究,包括脑癌、肝癌、胰腺癌、结肠癌、卵巢癌、膀胱癌、心脏病、糖尿病、自闭症以及其他遗传疾病,以更好地理解致病突变以及突变对疾病的影响。前不久刚刚结束的评选中,外显子组测序名列其中。

以上我们盘点了2010年第二代测序技术的最新进展和相关应用。但是除了第二代测序之外,还有另外一种以单分子实时测序和纳米孔为标志的第三代测序技术也正在如火如荼的发展中,只是还没有正式发布。所以目前科学界所说的高通量测序还指的是第二代测序。

一、测序技术发展现状

根据发展历史、影响力、测序原理和技术不同等,主要有以下几种:大规模平行签名测序(MassivelyParallel Signature Sequencing, MPSS)、聚合酶克隆(Polony Sequencing)、454焦磷酸测序(454 pyrosequencing)、Illumina(Solexa)sequencing、ABI SOLiD sequencing、离子半导体测序(Ion semiconductor sequencing)、DNA纳米球测序 (DNA nanoballsequencing)等。

随着第二代测序技术的迅猛发展,科学界也开始越来越多地应用第二代测序技术来解决生物学问题。比如在基因组水平上对还没有参考序列的物种进行重头测序(de novosequencing),获得该物种的参考序列,为后续研究和分子育种奠定基础;对有参考序列的物种,进行全基因组重测序(resequencing),在全基因组水平上扫描并检测突变位点,发现个体差异的分子基础。在转录组水平上进行全转录组测序(wholetranscriptome resequencing),从而开展可变剪接、编码序列单核苷酸多态性(cSNP)等研究;或者进行小分子RNA测序(small RNAsequencing),通过分离特定大小的RNA分子进行测序,从而发现新的microRNA分子。在转录组水平上,与染色质免疫共沉淀(ChIP)和甲基化DNA免疫共沉淀(MeDIP)技术相结合,从而检测出与特定转录因子结合的DNA区域和基因组上的甲基化位点。

二、高通量测序技术的应用

测序技术推进科学研究的发展。随着第二代测序技术的迅猛发展,科学界也开始越来越多地应用第二代测序技术来解决生物学问题。比如在基因组水平上对还没有参考序列的物种进行重头测序(de novosequencing),获得该物种的参考序列,为后续研究和分子育种奠定基础;对有参考序列的物种,进行全基因组重测序(resequencing),在全基因组水平上扫描并检测突变位点,发现个体差异的分子基础。在转录组水平上进行全转录组测序(whole transcriptomeresequencing),从而开展可变剪接、编码序列单核苷酸多态性(cSNP)等研究;或者进行小分子RNA测序(small RNA sequencing),通过分离特定大小的RNA分子进行测序,从而发现新的microRNA分子。在转录组水平上,与染色质免疫共沉淀(ChIP)和甲基化DNA免疫共沉淀(MeDIP)技术相结合,从而检测出与特定转录因子结合的DNA区域和基因组上的甲基化位点。

需要特别指出的是第二代测序结合微阵列技术而衍生出来的应用--目标序列捕获测序技术(Targeted Resequencing)。这项技术首先利用微阵列技术合成大量寡核苷酸探针,这些寡核苷酸探针能够与基因组上的特定区域互补结合,从而富集到特定区段,然后用第二代测序技术对这些区段进行测序。目前提供序列捕获的厂家有Agilent和Nimblegen,应用最多的是人全外显子组捕获测序。科学家们目前认为外显子组测序比全基因组重测序更有优势,不仅仅是费用较低,更是因为外显子组测序的数据分析计算量较小,与生物学表型结合更为直接。

目前,高通量测序开始广泛应用于寻找疾病的候选基因上。内梅亨大学的研究人员使用这种方法鉴定出Schinzel-Giedion 综合征中的致病突变,Schinzel-Giedion综合征是一种导致严重的智力缺陷、肿瘤高发以及多种先天性畸形的罕见病。他们使用AgilentSureSelect序列捕获和SOLiD对四位患者的外显子组进行测序,平均覆盖度为43倍,读长为50 nt,每个个体产生了2.7-3GB可作图的序列数据。他们聚焦于全部四位患者都携带变异体的12个基因,最终将候选基因缩小至1个。而贝勒医学院基因组测序中心也计划对15种以上疾病进行研究,包括脑癌、肝癌、胰腺癌、结肠癌、卵巢癌、膀胱癌、心脏病、糖尿病、自闭症以及其他遗传疾病,以更好地理解致病突变以及突变对疾病的影响。前不久刚刚结束的Science杂志年度十大科学突破评选中,外显子组测序名列其中。

三、测序技术总结与展望

第一代测序技术凭借其长的序列片段和高的准确率,适合对新物种进行基因组长距框架的搭建以及后期GAP填补,但是成本昂贵,而且难以胜任微量DNA样品的测序工作。第二代测序技术中,454序列片段最长,比较适合对未知基因组从头测序,搭建主体结构,但是在判断连续单碱基重复区时准确度不高。Solexa较454具有通量高、片段短、价位低的特点,可以用于大基因组和小基因组的测序和重测序。Solexa双末端测序(paired-end sequencing)可以为基因组进一步拼接提供定位信息,但是随着反应轮数增加,序列长度和质量均有所下降,而且在阅读AT区时有明显错误倾向。SOLiD基于双碱基编码系统的纠错能力以及较高的测序通量,适合转录本研究以及比较基因组学特别是SNP检测等,但是测序的片段短限制了该技术在基因组拼接中的广泛应用。第三代测序技术目前正在研发阶段,尚未正式投入使用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏

    评论

    相关推荐

    高通量测序数据分析:RNA-seq 精选资料分享

    的DNA序列及其注释 GEO (Gene Expression Omnibus):收集整理各种表达芯片数据,后来加入了甲基化、lncRNA、miRNA、CNV等其他芯片,还有高通量测序数据...
    发表于 07-26 07:30

    全基因组测序的优势 精选资料分享

    全基因组测序的优势目前,随着高通量测序技术快速发展、测序成本的进一步降低以及组装方法的不断完善,全基因组
    发表于 07-29 08:31

    研究首次实现高通量小RNA芯片非标记检测

    中科院苏州纳米技术与纳米仿生研究所李炯课题组与生物物理所阎锡蕴课题组合作,首次实现了高通量microRNA芯片的非标记检测,而其他芯片和测序技术需要数小时的手工操作才能完成
    发表于 10-17 09:12 718次阅读

    高通量测序常用名词汇总

    高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序
    的头像 发表于 02-28 14:05 3892次阅读

    高通量测序技术及其应用

    目前,所说的高通量测序技术主要是指454Lifescience公司、ABI公司和Illumian公司推出的第二代测序技术以及HelicosH
    的头像 发表于 02-28 14:24 1.6w次阅读
    <b class='flag-5'>高通量</b><b class='flag-5'>测序</b><b class='flag-5'>技术</b>及其应用

    高通量测序生物信息学分析

    高通量测序技术产生的DNA序列数据长度较短,而且数据量非常巨大。分析了高通量测序环境下大数据的挑战和机遇,总结并讨论了数据压缩、宏基因组数据
    的头像 发表于 02-28 14:43 1.6w次阅读
    <b class='flag-5'>高通量</b><b class='flag-5'>测序</b>生物信息学分析

    高通量测序面临的5大挑战

    测序流程中,生成的模板和序列的质量每天可通过用户友好界面系统地监控。这就保证了迅速发现并改正工作中的潜在问题。通常,质量控制和质量测评(qualitycontrol/qualityassessment,QC/QA)组共同应用质量检测标准。
    的头像 发表于 02-28 15:18 7916次阅读
    <b class='flag-5'>高通量</b><b class='flag-5'>测序</b>面临的5大挑战

    高通量基因测序是什么_高通量测序的意义

    “普通的基因测序”应该是指“常规DNA测序”吧,是用Sanger法进行测序的方法。高通量测序的概念其实是一个相对的概念,在2000年的时候,
    的头像 发表于 02-28 15:49 4w次阅读

    什么是高通量单细胞RNA测序技术

    自2009年汤富酬研究员在Nature Methods首次报道其开创性工作以来,单细胞RNA测序技术在生物医学领域,尤其是发育生物学和干细胞研究中展现出强大的应用前景。随着单细胞转录组扩增方法的不断优化和核酸测序
    的头像 发表于 04-25 13:50 9791次阅读

    厦门大学研发出全新高通量单细胞转录组测序方法

    针对上述挑战,杨朝勇教授课题组开发了一种全新的高通量单细胞转录组测序新方法(Paired-seq)。Paired-seq通过将高效单细胞捕获操控微流控芯片与DNA编码微珠技术相结合,一次测序
    的头像 发表于 06-02 11:06 3567次阅读

    披荆斩棘,乘风破浪——真迈生物高通量基因测序仪GenoLab发布

    自2005年首款高通量基因测序仪上市以来,基因测序平台便成为了全产业链中规模最大、技术门槛最高、最关键的环节。随着医疗健康行业对基因测序设备
    的头像 发表于 10-21 16:54 2415次阅读

    高通量测序中的“失相”问题

    每一种基于类似原理的测序方法,都存在这样的现象。而在使用不同化学反应的不同测序方法中,失相现象的特征也不尽相同。如要创建新的测序技术,对其失相现象的充分理解是一个必须解决的主要问题。
    的头像 发表于 01-14 17:21 3266次阅读

    曙光计算服务:高通量材料计算和筛选的概念介绍

    高通量材料计算和筛选是新材料数字化研发的一个重要手段,也是材料基因工程的重要内容。然而有不少大众对高通量材料计算和筛选的概念以及方法了解不多。在曙光计算服务的新一期直播中,我们将通过剖析高通量材料计算筛选案例,重点讲述
    的头像 发表于 12-08 09:08 3109次阅读

    高通量测序技术及原理介绍

    的原理、流程以及应用领域等方面进行介绍。 一、高通量测序技术原理 高通量测序
    的头像 发表于 02-03 14:46 1.2w次阅读

    高通量生物分析技术之微流控芯片

    高通量生物分析技术是指同时对一个样品中的多个指标或者对多个样品中的一个指标同步进行并行分析,以在最短的时间内获得最多的生物信息的新型分析技术。微流控芯片是高通量生物分析
    的头像 发表于 11-14 15:50 171次阅读