1 如何深度强化学习 人工智能和深度学习的进阶-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何深度强化学习 人工智能和深度学习的进阶

8gVR_D1Net08 2018-03-03 14:16 次阅读

传统上,强化学习在人工智能领域占据着一个合适的地位。但强化学习在过去几年已开始在很多人工智能计划中发挥更大的作用。其最佳的应用点在于计算艾真体(agent)在环境上情境化的决策场景中要采取的最佳行动。

强化学习非常适合自主决策,因为单靠监督学习或无监督学习技术无法完成任务。

传统上,强化学习在人工智能领域占据着一个合适的地位。但强化学习在过去几年已开始在很多人工智能计划中发挥更大的作用。其最佳的应用点在于计算艾真体(agent)在环境上情境化的决策场景中要采取的最佳行动。

强化学习使用试错法将算法奖励函数最大化,它非常适用于IT运营管理、能源、医疗保健、商业、金融、交通和金融领域的很多自适应控制和艾真体自动化应用。它用来训练人工智能,它为传统的重点领域提供支持——机器人技术、游戏和vwin ——以及边缘分析、自然语言处理、机器翻译、计算机视觉和数字助理等新一代人工智能解决方案。

强化学习也是物联网中自主边缘应用程序开发的基础。很多边缘应用程序的开发(工业、交通、医疗和消费应用)涉及对注入了人工智能的机器人技术的构建,这些技术可以在动态环境条件下以不同程度的情境自主性进行操作。

强化学习如何工作

在这样的应用领域中,边缘设备的人工智能大脑必须依赖强化学习,由于在这里缺少预先存在的“真实值(ground truth)”训练数据集,他们试图将累计奖励函数最大化,例如根据规范中包含的一组标准组装一个生产组件。这与其它类型的人工智能的学习方式形成对比,后者要么是(像监督学习一样)对相对于真实值数据的算法上的损失函数进行最小化,要么(像无监督学习一样)对数据点之间的距离函数进行最小化。

但是,这些人工智能学习方法不一定是孤岛。最有趣的人工智能趋势之一是强化学习与更高级的应用程序中的监督学习和无监督学习的融合。人工智能开发人员将这些方法融入到仅凭单一的学习方法不足为用的应用程序中。

例如,监督学习本身在没有标记的训练数据的情况下是无用的,在自动驾驶这样的应用中往往缺乏标记的训练数据,在这里,每个瞬时的环境情况本质上都是未标记且独特的。同样,无监督学习(使用聚类分析来检测传感器馈源和其它复杂的未标记数据中的模式)并非用来发现智能终端在真实世界的决策场景中应采取的最佳操作。

什么是深度强化学习

然后是深层强化学习,这是一种领先的技术,在这种技术中,自治的艾真体(autonomous agent)使用强化学习的试错算法和累计奖励函数来加速神经网络设计。这些设计为很多依靠监督和/或无监督学习的人工智能应用程序提供支持。

深度强化学习是人工智能开发和培训管道自动化的核心重点领域。它涉及对强化学习驱动的艾真体的使用,以快速探索与无数体系结构、节点类型、连接、超参数设置相关的性能权衡,以及对深度学习机器学习和其他人工智能模型设计人员可用的其它选择。

例如,研究人员正在使用深度强化学习来快速确定哪一种深度学习卷积神经网络(CNN)架构可能用于解决特征工程、计算机视觉和图像分类中的各种难题。人工智能工具可能会使用从深度强化学习获得的结果来自动生成最佳CNN,使用TensorFlow、MXNet或PyTorch等深度学习开发工具来完成该任务。

在这方面,看到强化学习发展和培训的开放框架的出现是鼓舞人心的。你在探索深度强化学习时可能需要探索下面这些强化学习框架,这些框架利用、扩展并与TensorFlow和其它深度学习和机器学习建模工具接合,这些工具已得到广泛采用:

强化学习

人工智能开发人员需要的强化学习技能

展望未来,人工智能开发人员将需要沉浸在这些框架和其它框架中实施的各种强化学习算法中。你还需要加深对多艾真体强化学习架构的理解,这其中有很多架构大量利用老牌的博弈论研究机构。你还要熟悉深度强化学习,以此来发现计算机视觉应用中与名为“模糊”的攻击方法相关的安全漏洞。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47182

    浏览量

    238195

原文标题:什么是深度强化学习:人工智能和深度学习的下一步

文章出处:【微信号:D1Net08,微信公众号:AI人工智能D1net】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    、连接主义和深度学习等不同的阶段。目前,人工智能已经广泛应用于各种领域,如自然语言处理、计算机视觉、智能推荐等。 嵌入式系统和人工智能在许
    发表于 11-14 16:39

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之一,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度
    的头像 发表于 11-14 15:17 497次阅读

    如何使用 PyTorch 进行强化学习

    的计算图和自动微分功能,非常适合实现复杂的强化学习算法。 1. 环境(Environment) 在强化学习中,环境是一个抽象的概念,它定义了智能体(agent)可以执行的动作(actions)、观察到
    的头像 发表于 11-05 17:34 277次阅读

    人工智能、机器学习深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2479次阅读
    <b class='flag-5'>人工智能</b>、机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习深度学习等先进技术,AI能够处理和分析海量
    发表于 10-14 09:12

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度
    发表于 07-29 17:05

    人工智能、机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1258次阅读

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展,人工智能(AI)技术特别是深度学习在各个领域展现出了强大的潜力和广泛的应用价值。深度学习作为人工智能的一个核心分支,通过
    的头像 发表于 07-03 18:20 4083次阅读

    深度学习常用的Python库

    深度学习作为人工智能的一个重要分支,通过模拟人类大脑中的神经网络来解决复杂问题。Python作为一种流行的编程语言,凭借其简洁的语法和丰富的库支持,成为了深度学习研究和应用的首选工具。
    的头像 发表于 07-03 16:04 622次阅读

    深度学习与卷积神经网络的应用

    随着人工智能技术的飞速发展,深度学习和卷积神经网络(Convolutional Neural Network, CNN)作为其中的重要分支,已经在多个领域取得了显著的应用成果。从图像识别、语音识别
    的头像 发表于 07-02 18:19 881次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的过程中,深度
    的头像 发表于 07-02 14:04 949次阅读

    深度学习与传统机器学习的对比

    人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1318次阅读

    FPGA在深度学习应用中或将取代GPU

    现场可编程门阵列 (FPGA) 解决了 GPU 在运行深度学习模型时面临的许多问题 在过去的十年里,人工智能的再一次兴起使显卡行业受益匪浅。英伟达 (Nvidia) 和 AMD 等公司的股价也大幅
    发表于 03-21 15:19

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 616次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    详解深度学习、神经网络与卷积神经网络的应用

    在如今的网络时代,错综复杂的大数据和网络环境,让传统信息处理理论、人工智能与人工神经网络都面临巨大的挑战。近些年,深度学习逐渐走进人们的视线,通过深度
    的头像 发表于 01-11 10:51 2021次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、神经网络与卷积神经网络的应用