1 病毒进化迅速难研究? 机器学习来助力-德赢Vwin官网 网
0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

病毒进化迅速难研究? 机器学习来助力

KIyT_gh_211d74f 来源:未知 作者:伍文辉 2018-03-29 14:05 次阅读

最近,研究者借助 AI 技术发现了近 6000 种前所未闻的新病毒,这一工作已在 3 月 15 号由美国能源部(DOE)组织的一场会议中展示,成为了一种探索发现数量巨大、种类繁多的病毒的新工具。

尽管从人类健康到垃圾降解,病毒的影响力无处不在,却很难被研究。科学家无法在实验室培植绝大多数病毒,确定其基因序列的尝试也多遭失败,因为它们的基因组极小,且进化迅速。

近年来,通过将取自不同环境的样本中的 DNA 进行排序,研究者已经获得了一些未知的病毒。为了确定目前存在的微生物,研究者搜集了已知病毒和细菌的基因特征,就如同文字处理器的「查找」功能会突出显示文档中包含特定字母的单词。但这一方法经常失败,因为病毒学家无法搜集他们不知道的东西。机器学习解决了这一问题,因为它可以发现海量数据中的潜在模式。机器学习算法解析数据,从中学习,接着自动分类信息

南加州大学洛杉矶分校的计算生物学家 Jie Ren 说:「从前没有研究病毒的好方法,但现在就不同了,我们有了新工具。」

上周日,美国能源部联合基因组研究所(JGI)的计算生物学家 Simon Roux 训练计算机识别不常见的 Inoviridae 病毒家族的基因序列。这些病毒生存在细菌中并改变宿主的行为:比如,它们会使引起霍乱的细菌即霍乱弧菌的毒性变得更强。Roux 在 JGI 组织的会议上(加州,旧金山)展示了其研究,称在他的研究开始前已识别到的基因组种类不到 100 种。

Roux 展示了一个机器学习算法,该算法使用两个数据集:一个包含 805 个来自已知 Inoviridae 的基因序列,另一个包含 2000 个来自细菌和其他病毒的基因序列。算法可以找到一种方式来区分二者。

然后,Roux 向模型馈送大量宏基因组学数据集。计算机恢复了一万多种 Inoviridae 基因组,并将其分成不同种类的集群。这些集群之间的基因变异非常大,意味着 Inoviridae 可能有很多家族。

病毒学习

在另一项独立研究中,巴西圣保罗大学的生物信息学家 Deyvid Amgarten 应用机器学习来在城市动物园的天然肥料堆中寻找病毒。他将算法设计为可以搜索病毒基因组的几个可分辨特征,例如给定长度的 DNA 双链的基因密度。经过训练之后,计算机复原了几种可能是新型的基因组,Amgarten 说。他将这个结果在 JGI 会议上进行了展示。最后一步是学习这些病毒生成的蛋白质种类,然后检查哪些蛋白质将加速有机物的破坏。「我们希望改善肥料的质量。」他说。

Amgarten 是从去年报告的一项机器学习工具即 Ren 的团队开发的 VirFinder 中得到灵感的。VirFinder 被设计用于寻找 DNA 碱基组合,例如 DNA 双链中的 AT 或 GC。Ren 将算法应用到从健康人和肝硬化患者(由肝炎或慢性酒精中毒导致的疾病)的脸部取样的宏基因组。机器将取样的病毒完成了分组之后,该团队注意到样本中某些特定类型的基因组在健康人群中相对更少或更多,这意味着这些基因组相关的病毒可能导致了疾病。Ren 的成果是一项很诱人的发现:生物医学研究者长期以来一直很困惑,到底是哪些病毒导致了那些疑难杂症,例如慢性疲劳综合症(也称为肌痛性脑脊髓炎),以及炎症性肠病。

康涅狄格州法明顿市的基因组医学杰克逊实验室的免疫学家 Derya Unutmaz 推测,病毒可能触发了一些毁灭性的反应,或者改变了人体微生物群系的细菌行为,从而使新陈代谢和免疫系统变得不稳定。Unutmaz 说,通过应用机器学习,研究者可以发现患者体内仍被隐藏的病毒。此外,由于 AI 可以在大规模数据集中发现模式,该方法也许可以将病毒数据和细菌关联起来,然后和症状相关的蛋白质变化关联起来。「机器学习可以揭示出我们甚至从没思考过的问题。」Unutmaz 说。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表德赢Vwin官网 网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 医疗
    +关注

    关注

    8

    文章

    1822

    浏览量

    58737
  • 机器学习
    +关注

    关注

    66

    文章

    8406

    浏览量

    132557
  • 数据分析
    +关注

    关注

    2

    文章

    1445

    浏览量

    34047

原文标题:前沿 | 机器学习助力医疗,通过数据分析发现近6000种新病毒

文章出处:【微信号:gh_211d74f707ff,微信公众号:重庆人工智能】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能
    的头像 发表于 11-16 01:07 380次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度学习机器
    的头像 发表于 11-15 09:19 430次阅读

    具身智能与机器学习的关系

    (如机器人、虚拟代理等)通过与物理世界或虚拟环境的交互获得、发展和应用智能的能力。这种智能不仅包括认知和推理能力,还包括感知、运动控制和环境适应能力。具身智能强调智能体的身体和环境在智能发展中的重要性。 2. 机器
    的头像 发表于 10-27 10:33 352次阅读

    【《时间序列与机器学习》阅读体验】+ 时间序列的信息提取

    之前对《时间序列与机器学习》一书进行了整体浏览,并且非常轻松愉快的完成了第一章的学习,今天开始学习第二章“时间序列的信息提取”。 先粗略的翻阅第二章,内容复杂,充斥了大量的定义、推导计
    发表于 08-14 18:00

    【「时间序列与机器学习」阅读体验】+ 简单建议

    这本书以其系统性的框架和深入浅出的讲解,为读者绘制了一幅时间序列分析与机器学习融合应用的宏伟蓝图。作者不仅扎实地构建了时间序列分析的基础知识,更巧妙地展示了机器学习如何在这一领域发挥巨
    发表于 08-12 11:21

    【《时间序列与机器学习》阅读体验】+ 了解时间序列

    收到《时间序列与机器学习》一书,彩色印刷,公式代码清晰,非常精美。感谢作者,感谢德赢Vwin官网 提供了一个让我学习时间序列及应用的机会! 前言第一段描述了编写背景: 由此可知,这是一本关于时间序列进行大数
    发表于 08-11 17:55

    OpenAI揭秘CriticGPT:GPT自进化新篇章,RLHF助力突破人类能力边界

    OpenAI近期震撼发布了一项革命性成果——CriticGPT,一个基于GPT-4深度优化的新型模型,其独特之处在于能够自我提升,助力未来GPT模型的训练效率与质量跃升至新高度。这一创新之举,仿佛开启了AI自我进化的“左脚踩右脚登天”模式,预示着AI能力的无限可能。
    的头像 发表于 07-02 10:19 775次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习和深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1320次阅读

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来?

    捕捉复杂非线性模式的场景中显得力不从心。 将时间序列的分析与预测用于大规模的数据生产一直存在诸多困难。 在这种背景下,结合机器学习,特别是深度学习技术的时间序列分析方法,成了研究和应用
    发表于 06-25 15:00

    请问PSoC™ Creator IDE可以支持IMAGIMOB机器学习吗?

    我的项目使用 POSC62 MCU 进行开发,由于 UDB 模块是需求的重要组成部分,所以我选择了PSoC™ Creator IDE 进行项目开发。 但现在,由于需要扩展,我不得不使用机器学习模块
    发表于 05-20 08:06

    机器学习怎么进入人工智能

    ,人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是一类基于样本数据和模型训练进行预测和判断的
    的头像 发表于 04-04 08:41 297次阅读

    机器学习如何助力芯片设计

    1959年,计算机游戏和人工智能的先驱亚瑟·塞缪尔(Arthur Samuel)将ML定义为“使计算机能够在没有明确编程的情况下学习研究领域”。
    的头像 发表于 03-29 10:03 511次阅读

    机器学习8大调参技巧

    今天给大家一篇关于机器学习调参技巧的文章。超参数调优是机器学习例程中的基本步骤之一。该方法也称为超参数优化,需要搜索超参数的最佳配置以实现最佳性能。
    的头像 发表于 03-23 08:26 611次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>8大调参技巧

    勒索病毒的崛起与企业网络安全的挑战

    在数字化时代,网络安全已成为企业维护信息完整性、保障业务连续性的关键。然而,勒索病毒以其不断进化的攻击手段和商业化模式,成为全球网络安全领域最严峻的威胁之一。本文将概述勒索病毒带来的危害与挑战,并
    的头像 发表于 03-16 09:41 474次阅读

    人工智能和机器学习的顶级开发板有哪些?

    设备不必再依赖远程服务器或云洞察传感器数据或用户输入。像TinyML这样的软件框架正在发展成为微控制器专用的机器学习解决方案,而传统的深度学习框架也可以在功能强
    的头像 发表于 02-29 18:59 818次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的顶级开发板有哪些?