IEEE 802.16b PHY(Physical Layer)研究小组在不同的接入方式(OFDM/OFDMA)下,分别为系统选择了几种不同点数的FFT,现在公认的观点是这种选择还可以改进。物理层基于OFDM(Orthogonal Frequency-Division Multiple)调制,支持TDMA和OFDMA(OFDM ACCESS)。
OFDM是一种多载波传输技术,N个子载波把整个信道分割成N个子信道,N个子信道并行传输信息。OFDM系统有许多非常引人注目的优点。第一,OFDM具有非常高的频谱利用率。普通的FDM系统为了分离开各子信道的信号,需要在相邻的信道间设置一定的保护间隔(频带),以便接收端能用带通滤波器分离出相应子信道的信号,造成了频谱资源的浪费。OFDM系统各子信道间不但没有保护频带,而且相邻信道间信号的频谱的主瓣还相互重叠但各子信道信号的频谱在频域上是相互正交的,各子载波在时域上是正交的,OFDM系统的各子信道信号的分离(解调)是靠这种正交性来完成的。另外,OFDM的个子信道上还可以采用多进制调制(如频谱效率很高的QAM),进一步提高了OFDM系统的频谱效率。第二,实现比较简单。当子信道上采用QAM或MPSK调制方式时,调制过程可以用IFFT完成,解调过程可以用FFT完成,既不用多组振荡源,又不用带通滤波器组分离信号。第三,抗多径干扰能力强,抗衰落能力强。由于一般的OFDM系统均采用循环前缀(Cyclic Prefix,CP)方式,使得它在一定条件下可以完全消除信号的多径传播造成的码间干扰,完全消除多径传播对载波间正交性的破坏,因此OFDM系统具有很好的抗多径干扰能力。OFDM的子载波把整个信道划分成许多窄信道,尽管整个信道是有可能是极不平坦的衰落信道,但在各子信道上的衰落却是近似平坦的,这使得OFDM系统子信道的均衡特别简单,往往只需一个抽头的均衡器即可。
载波间的频率间隔由FWA(固定无线接入)系统所用信道的多径特性决定。由于信道的传播特性依赖于区域的地形和小区半径,因此为了提高系统性能应增加载波的数量和FFT的点数,或者减小带宽。保护间隔的大小在1/32――1/4的FFT间隔持续时间里是可调的。
本文探讨的是OFDM模式下使用2048点FFT的优越性及其对802.16b系统的益处。
一、支持的FFT和保护间隔的长度
上行和下行链路都可以使用不同的FFT长度。使用不同的FFT长度可以有效控制多径衰落和信道信号变化速率。长的FFT可以用来避免多径信道中的长时延,短的FFT可以用于传播路径较少的近距系统。多径信道吞吐量的减少由保护间隔大小决定,以下表格就概括了在几种不同信道带宽下不同FFT长度下的保护间隔持续时间。
另一个采用大长度FFT的优点是发射信号可以获得更好的频谱形状。使用2048点FFT损耗将比64点FFT低15dB,这将使得多系统可以更好地共存。
二、功率集中和自适应功率控制
OFDMA在下行和上行链路都有很多优势。除了符号长度大外,最大的优势是使功率集中成为可能。功率集中通过仅给已分配的子信道发送功率来实现。因此,用户能量只在选定的载波上传输而不是在所有载波上。通过这个技术用户和基站可以控制不同子信道的能量大小。
基站同样可以控制不同子信道中的功率,并且获得多达6dB的增益。这种技术被成为前向功率控制,它被用来调整下行链路中的用户功率。
功率集中有以下几个优势:
(1) 覆盖性能更好
(2) 对大的小区提供更大的自动功率控制范围
(3) 提供优越的重用因子
(4) 信道可用性更高
(5) 可使用更简单、更廉价的功放
(6) 传送的信号获得更佳的信噪比(SNR)
(7) 系统的有效覆盖更广,相同等效全向辐射功率(Equivalent Isotropic Radiated Power)下具有更优越的覆盖。
三、抗干扰性能优越
如使用以下参数来计算系统的半径:
(1)20MHz信道带宽
(2)16QAM调制
(3)一个子信道传输
(4)接收器NF=4dB
(5)功率发射30 dBm
(6)在SS中使用30°天线,基站使用60°天线
(7)简单的传播方式的直射传播LOS(Line-of-sight)和非直射传播NLOS(non-LOS)。
使用参考文献[2]中的信道模式,在郊区获得以下的结果(参考文献[3]),在市区可能会坏一些。
64 OFDM:~2.5Km for LOS, ~300m for NLOS
2k OFDM: ~ 14.5Km for LOS, ~715m for NLOS
可见 OFDMA系统具有极大的优势。
四、共存
共存问题仅限于讨论OFDMA比已应用的常规技术的优越之处,诸如DFS技术之类的问题由于在FFT中较常见本文不予详述。
1.减少已存在的干扰
在城域网环境中的干扰可归纳为
(1)窄带干扰
(2)部分频带干扰
(3)脉冲干扰
(4)其他在运行系统的干扰和IEEE 802.11a,HiperLAN2共存干扰。
2.窄带干扰
窄带干扰可以用下几种方式来抑制:
(1)对符号使用时间成形再进行均衡(用越多点数的FFT,获得的符号波形越佳)。
(2)使用干扰检测和智能电子耦合控制(ECC,Electron Coupling Control),可以去除坏码。在任何情况下,特别是在OFDMA中,与使用小点数的FFT相比,使用大点数的FFT可以有效的抑制对基站的干扰(归功于FFT滤波),并且使更少的载波受到损坏。
3.部分频带干扰
坏码检测使用智能ECC来去除坏码,从而能够抑制部分频带干扰。2k 模式的OFDMA可以对宽带干扰或802.11a,HiperLAN2干扰获得15dB的处理增益。
4.脉冲干扰
使用时域数据交错可限制短时干扰。子信道时间交错、短分组长度实现了简单的时域交错和更佳的多路统计复用性能。
5.其他系统的干扰及其和IEEE 802.11a,HiperLAN2共存
当使用大点数的FFT时802.16b PHY和IEEE802.11a、HiperLAN2共存是最佳的。当使用大点数FFT,载波带宽大约有10kHz(而64点FFT需300KHz以上),这个带宽差值使我们获得15dB的处理增益,而且,FFT滤波器至少可以使所有干扰都减少13dB,当两个系统工作在相同的发射功率时考虑所有上述情况。
6.其它的抗干扰和系统共存方法
有很多的方法可以使两个系统同时运行而互不干扰:
使用定向天线
使用自适应阵列与无人操纵技术
上述都是基于天线的技术,它们可以去除或抑制干扰。
五、结论
本文举例试图证明OFDMA改善了802.16b的系统性能。随着802.16宽带无线接入城域网标准的制定,可以预见OFDMA在不久的将来会有非常广阔的应用前景。
-
滤波器
+关注
关注
161文章
7795浏览量
177990 -
功率
+关注
关注
14文章
2065浏览量
69855
发布评论请先 登录
相关推荐
评论